

myPROJECT Designer 6
User Manual

Version May 2015

www.myscada.org ©mySCADA Technologies s.r.o. 2015

http://www.myscada.org/

 1

Table of content

1. About myPROJECT Designer ... 4

2. Start with myPROJECT Designer ... 6
2.1 Creating Project .. 8
2.2 Managing Workspace ... 12
2.3 Checking Project ... 14

3. GUI/HMI Editor ... 17
3.1 Creating Views .. 17
3.2 Selecting Objects ... 22
3.3 Drawing Primitives .. 22
3.4 Creating Text Elements ... 23
3.5 Inserting Images .. 24
3.6 Poly-lines ... 26
3.7 Moving Objects ... 28
3.8 Resizing Objects .. 28
3.9 Rotating Objects .. 28
3.10 Skewing Objects .. 29
3.11 Corner Filleting ... 29
3.12 Combining Objects .. 30
3.13 Fill and Stroke ... 32
3.14 Rulers and Guides ... 39
3.15 Layers ... 42
3.16 Copying and Pasting Elements .. 43
3.17 Objects Order .. 45
3.18 Grouping ... 46
3.19 Repeated Actions Mode ... 49
3.20 Visual Scripts ... 49
3.21 Used Tags .. 50
3.22 Live View ... 50
3.23 Zoom on Zone ... 50
3.24 Undo and Redo ... 51
3.25 Adding Components and Icons ... 51
3.26 View Properties .. 53
3.27 Error Box Properties ... 54

4. Layout Views ... 56
4.1 Page Layout ... 56
4.2 Adding Layout View .. 57
4.3 Creating New Layout ... 57
4.4 Using Layouts in Views .. 58

5. Entering Tags and Expressions ... 60
5.1 Entering Tags ... 60
5.2 Entering Mathematical Expressions ... 61

6. Tag Database ... 66

7. Linking Views with PLC .. 67
7.1 Animations .. 68
7.2 Effects ... 82
7.3 Time Sequence .. 87

8. Open/Set command .. 90
8.1 Open Command .. 90

9. Set Command .. 94

 2

9.1 Writing Values to PLC .. 94

10. Parametric Views ... 100
10.1 Connection Change in Parametric Views .. 101
10.2 Use of $number$ in texts ... 101

11. Visual Scripting ... 102
11.1 Using Script in Views ... 102
11.2 Declaring Variables ... 103
11.3 Writing Script .. 104

12. Documents .. 107

13. Creating iOS Trends ... 108

14. Creating Advanced Trends ... 110

15. iOS Alarms ... 114

16. CAS Alarms .. 117
16.1 Digital Alarms .. 117
16.2 Analog Alarms ... 117
16.3 Alarm Window .. 121
16.4 Alarm History .. 122

17. Data Logging .. 124
17.1 Data Logs .. 124
17.2 Continuous Data Logging .. 125
17.3 Triggered Data Logs .. 126
17.4 Tabular Views ... 126

18. Connections ... 128

19. User Access Levels ... 130
19.1 Access Levels ... 130
19.2 Specify User Accounts... 130

20. Server-side Scripts ... 134
20.1 Introduction .. 134
20.2 Server-side Scripts folder .. 135
20.3 Scripts Toolbar .. 135
20.4 Server-side Scripts Folder Structure ... 135
20.5 Script Editor Functions .. 136
20.6 Event-driven Asynchronous Callbacks .. 137
20.7 Organizing Applications into Modules .. 138
20.8 Creating Reports ... 140
20.9 Scripting Functions ... 145
20.10 Debugging ... 165
20.11 Script Status .. 168
20.12 Ser2Net ... 170
20.13 Script Samples .. 171

21. Creating and Testing Components .. 172
21.1 Creating Components ... 172
21.2 Component Variables ... 174
21.3 Replacements ... 178
21.4 Testing Component .. 185
21.5 Entering Advanced Functions (Equations) .. 186

22. Devices .. 189

 3

23. Communications .. 191
23.1 EtherNet/IP (ControLogix) .. 191
23.2 MicroLogix and SLC ... 193
23.3 Modbus ... 194
23.4 OPC UA .. 202
23.5 MELSEC-Q ... 204

24. Download/Upload from/to Device ... 208
24.1 Download to Device .. 208
24.2 Upload from Device .. 209

 4

1. About myPROJECT Designer

myPROJECT Designer, part of the mySCADA bundle, is an integrated development environment used
for configuring, developing and managing HMI/SCADA applications. In this manual you will find
everything you need to create a full-featured SCADA (Supervisory Control and Data Acquisition)
project visualization. With this tool you can create and manage mySCADA projects, configure
connections with devices, enter tags, alarms, and trends. It also allows you to design advanced
mimic graphics with specific animations, corresponding with PLC tag values.

A simple to use interface allows for easy manipulation of the project’s configuration and data
processing. The project data are stored in a single directory for easy backup and restoration.

myPROJECT Designer has an integrated GUI (Graphical User Interface) visualization editor for easy
creation of professionally looking mimic graphics. The graphics are based on the Scalable Vector
Graphic format, which means you will always have a sharp look of your controlled technology.

Key features

Free for personal and business use

Simple to use

GUI design in Scalable Vector Graphics (SVG)

Animations and effects based on tag values can be added to any shape or object

Support for background images (JPEG, GIF, PNG)

Ability to attach PDF-documents to the project

Ability to attach MP3-sounds to the project

Built-in script editor

Available for Mac OS X, Windows and Linux

Drawing possibilities

Shape tools: rectangles, circles, ellipses, paths, texts, images

Path tools: Bezier curves, conversion to a path, union, subtraction, intersection, merge

Group editing

Advanced text support

Images import (jpg, png)

Transformations: resize, rotate, skew, align, distribute

Properties manager

Resource manager: gradients, patterns and markers

Object viewer

 5

Project management

Key components of mySCADA projects are the visualization screens - views. This is where the
schematic visualizations of controlled devices are displayed. There single objects or groups of
objects can be created and defined especially for communication with connected PLCs. These
specified objects could be then animated – changing visual appearance, based on the PLC tag
values.

The graphic screens are internally represented as SVG files, defined project connections as
configuration text files together with alarm states and trends also stored in separate text files. The
text files can be edited directly in myPROJECT Designer, so you do not have to edit them
individually. The scripts are also stored into external files and can be edited in your favorite text
processor. Complete mySCADA projects consist of configuration texts, SVG files, scripts, documents
and sounds, and are saved directly to your hard drive.

In the following sections you will learn how to create a project, add, configure or delete
connections, define alarms and trends and other project settings.

 6

2. Start with myPROJECT Designer

The first screen you will see after opening the application is the Start Page.

Click on the blue arrow in the left bottom corner to briefly get to know the possibilities of
myPROJECT Designer. The Start Page opens up always upon the start of the application - if you wish
to prevent this, click on the Show On Startup button at the bottom. You can close the Start Page by
clicking on the cross in the header tab. If you wish to display the Start Page again, go to the main
menu, section Help and select Start Page.

Look at the picture below to briefly get to know the myPROJECT Designer interface:

 7

Main menu

File – manipulation with project files and printing

Project – has the same structure as the Project Window

View – work with views

Documents – load, copy and deletion of attached PDF-documents

iOS Trends – opening up and closing trend for iOS Devices

Advanced Trends – opening up and closing trend

iOS Alarms – opening up and closing simple alarms for iOS Devices

CAS Alarms – opening up and closing complex alarms

Data logs – define data logging

Tag Database – manage your tags

Connections – connections to your PLCs

Server-side Scripts - managing scripting in mySCADA

Sound – load and deletion of MP3-files

Devices – Equipment with installed mySCADA application, accessible from editor

Library – work with Library

Window – direct access to different editor tabs and window control

Help – opens the help menu

Main toolbar

The basic toolbar consists of the following functions:

 Save – saves your work

 Save all files – saves all opened files

 Upload from Device – downloads a project from the selected mySCADA device. Be aware

that all files of your current project will be overwritten!

 Download to Device – uploads a project to the selected mySCADA device. Be aware that all
project data on the selected device will be overwritten!

 New Project – creates a new project

 Open Project – opens an existing project

 Close Project – closes a selected project

 8

 Check Project – checks the selected project

 Project Up – moves up the project in the list

 Project Down – moves down the project in the list

The main toolbar content may change, depending on a selected project element (i.e. project, view,
sound, script, document or alarm).

The set of described icons is attributed to the project elements only; other possible sets are
described in the chapters devoted to the relevant elements.

2.1 Creating Project

Start using myPROJECT Designer with creating a new project.

1) Click on the New Project icon in the main toolbar or use the command New Project from the
main menu Project-> Projects.

2) A new dialog window will show up with 3 options:

Empty Project

With this option you create a new empty project.

 9

1) Choose the directory where your empty project will be located.

2) If the selected directory is not empty all its files will be deleted.

3) Click on the Finish button to create an empty project.

Import Project

This option imports another project from a MEP file (all exported projects of mySCADA Designer use
this suffix).

1) Choose the directory where data of an imported project should be located and click on Next.

2) Click on Import File (*.mep) and then on the Finish button - an imported project will be
created into the selected directory.

 10

3) If the directory is not empty all its files will be deleted.

4) Click on Finish to finalize importing.

Project Wizard

This feature helps you create a functional base of your new project step-by-step. It will create a
connection to the PLC, set up a simple screen with animations and pre-configure alarms and data
logging.

1) Select the directory where you want locate your new project and then click on Next.

Note: You have to click on Clear Directory first if the selected directory is not empty.

2) Set the connection to your device and click on Next.

 11

3) Set the Tag (Address) and click on Next.

4) You can now set the Tag Value Range, Alarm limits, add iOS Trends and iOS Alarms.

5) Click on Finish to close the Project Wizard.

 12

2.2 Managing Workspace

All myPROJECT Designer windows are organized into panes. You can move the windows arbitrarily
as the designer remembers position of both automatically and manually closed windows until the
next time opening.

Each window can be dragged away from the workspace and stay undocked until you dock them
back by using Alt+Shift+D key combination. You may resize the windows, as well.

If you wish to put all the windows into their default state, use the Reset Windows command from
the menu Window –> Reset Windows.

Moving windows

Click on the window header and drag it to the desired position,

Note: The red preview box indicates where the window will appear once you drop it.

Automatically appearing windows

Some windows appear only when you are performing a task to which
they are related. For example, the Library window appears only when
you are designing a screen view. In the menu Window you can select
which windows will be appearing automatically.

Important shortcuts

Shift + Escape Maximizes a currently opened window

Ctrl + Shift + W Closes all open documents in the Source Editor.

Alt + Shift + D Pins a detached window to the Main window.

 13

Project Window

It displays a tree structure of opened projects, available libraries and the list of connected devices.

Project (Your project name)

Views – all HMI screens for given project

Layouts – all defined graphical layouts for given project

Layout Views – views (HMI screens) that can be used in the layout

Documents – PDF-documents, attached to the project

iOS Trends – configured trends used in iOS devices

Advanced Trends – advanced trend, use with data-logs to retrieve online and historical data

iOS Alarms – configured alarms for iOS devices

CAS Alarms – here you can configure Complex alarm system

Data Logs – configured data logs

Tags Database – managing your tags

Connections – PLC connections of a given project

Server-side Scripts – user-defined scripts

Sounds – associated sounds in MP3 files

Users – defined project users

Components - library of dynamic HMI/GUI components sorted into categories

User Components - library of editable dynamic HMI/GUI components sorted into categories

Icons - library of icons sorted into categories for HMI/GUI development

Devices – list of available devices to load a project from/to. Here you can find all iPods, iPhones,
iPad Touches, Android devices, Raspberry PI devices, mySCADA Boxes, and mySCADA Pro and Server
PCs you can connect to. You can also specify the device manually to reach remote network devices.
Note that it may take a few minutes to find all your devices available in the local network.

Overview window

This window shows a preview of selected views otherwise it is blank.

Properties window

This window creates access to object and project properties. The properties of specific objects are
described in the relevant chapters.

Main window

This window is your main working area where the content of all project elements opens up. It gives
you the ability to draw graphic visualizations, change connection details and alter the alarm or trend
details. The scripting editor also uses this window.

 14

This button expands the list of all opened projects and select one of them. The arrow next to
the project name will aim to the currently displayed project.

 This button maximizes the main window by docking the rest of all opened windows.

 These buttons are used for switching different opened tabs, in case the tabs do not fit into the
main window.

2.3 Checking Project

If you want to make sure your mySCADA applications run properly you have to comply with certain
rules when creating a project. For this purpose you can use the Check Project function which checks
if your project complies with these rules.

Use the command Check Project from Project->Projects or click on the Check Project icon in the
main toolbar.

Example:

1) Select parts of your project that require checking:

 15

2) The Syntax Settings button sets which errors will be ignored:

3) The Check button starts checking the project syntax.

If the check is successful a confirming dialog will show up:

If the check finds errors an error dialog will show up:

 16

4) Click on the Show button to display all errors.

Note: All errors are divided into categories on the left; a selected error category will be displayed on
the right side. If you wish to correct all the found errors click on Repair.

 17

3. GUI/HMI Editor

The GUI editor is a drawing interface based on Scalable Vector Graphics of XML technology.

3.1 Creating Views

To create views for the process visualization open the Views folder in the Project Window, the main
toolbar will show you these options: Open View, Add View, Duplicate View, Delete View, Print View
and Show Used Tags.

1) Click on the Add View icon located above the main screen or use the command from the
main menu Project->Views->New View.

A new dialog window opens to let you set the visualization parameters:

Name: view name

Description: additional comment for visualization

Parametric window: option to create a parametric view - use parametric views when you
need more similar views different only in a data source; such source is
specified by the received index when a parametric view is prompted
(see Sets – Open command and Parametric window).

Connection: list of PLC connections, defined in the current project. This is a default
connection - if you enter the tag and do not specify the alias, this

connection will be assumed as default.

Refresh: refresh rate of the visualization, time in milliseconds

Page orientation:

 Portrait predefined vertical display

 Landscape predefined horizontal display

 18

Note: If your device uses a pop-up menu tool bar (iPhone, Smartphones, etc..) you can set up its
width in pixels which will be automatically subtracted from the final screen size.

New view size:

 Parameter Based – here you can set the aspect ratio and the canvas size

 Device Based – variation of pre-defined settings for many types of devices

 Custom – allows you to define your own view settings

Note: You can change the screen dimensions any time later if you right-click on the canvas and
select ’Resize canvas’ from the pop-up menu.

2) Click on Add to create a view with selected parameters or press Cancel to exit without
creating or saving the view.

In the Project Window you can see all the views listed in the Views folder. In the Properties window
you can see the parameters of a currently selected view. To open an existing view you can click on
the Open View icon or select Open View from the Project->Views menu. You may also use the other
options such as: copy, delete, import a view etc.

 19

Menu

File

This menu allows you to manipulate with an opened view:

Export – exports the current view into other formats: JPG, PNG, BMP and PDF

Print – prints the current file (shortcut Ctrl+P).

Check – performs the check of your view, use it if you experience a strange behavior - it will
check out possible IDs duplicity, misplaced objects out of the canvas etc.

Close – closes the current file (shortcut Ctrl+W).

Edit

This menu provides basic operations with objects, like: undo, redo, copy, cut, delete, group, lock,
select, etc.

Undo – erases the last change made in the program (shortcut Ctrl+Z)

Redo – reverts the change of the last undo (shortcut Ctrl+Y)

Copy – creates a copy of a selected object or area into the clipboard (shortcut Ctrl+C)

Paste – pastes the object or area from the clipboard (shortcut Ctrl+V)

Paste on same location – pastes the copied or cut object to the same location as the source.

Cut – cuts a selected object and places it in the clipboard (shortcut Ctrl+X)

Delete – deletes a selected object (shortcut Ctrl +D)

Paste dimensions – provides transfer of certain parameters of a selected object:

Paste size – modifies selected objects, setting to the size of the file being copied

Paste width – modifies selected objects, setting to the size of the file being copied

Paste height – modifies selected objects, setting to the size of the file being copied

Paste size separately – resizes selected objects

Paste width separately - changes the width of selected objects

Paste height separately – changes the height of selected objects

Group – groups multiple objects together (shortcut Ctrl+G)

Ungroup – splits the grouped objects

Enter group – allows access to individual objects inside an object group (shortcut Ctrl+E)

Exit group – returns to a normal selection mode, i.e. the whole group will be selected at once
(shortcut Ctrl+Shift+E)

Select all – selects all objects on the canvas (shortcut Ctrl+A)

Deselect all – deselects all objects on the canvas

 20

Drawing

In this menu you can create figures, lines and curves, add pictures, texts, etc.

It contains the same features as the main toolbar, for detailed information see the toolbar section
of this chapter.

Transforms

In this menu you can align, center, distribute, order, flip, rotate objects and resize the canvas.

Display

In this menu you can enable grid and rulers, different zoom options are available too.

Dialogs

This menu includes two features: Graphics Object Inspector and Memory Monitor.

Graphics Object Inspector - allows tree-like access to any element of a currently opened view

Memory Monitor - shows an amount of memory being used by myPROJECT Designer

Help

This menu offers additional information about myPROJECT Designer.

The most frequently used functions from these menus are also available in the main toolbar or the
right-click menu.

GUI toolbar

In the upper part of the view editor window there is a secondary GUI toolbar where can find all the
necessary functions for designing and animating the views.

Properties bar

It is located right below the GUI toolbar. It allows you to view, change the properties of selected
objects or set default drawing properties such as: fill and stroke color; line type and line thickness;
font family, type and size.

If there is no object selected, you can specify the default properties for new objects to be created. If
you click on an existing object you will see its current properties that you can modify.

In the following example all the new objects will have transparent fill and black solid line stroke:

 21

With the Properties bar you can easily change properties of multiple objects at once.

Working with the Properties bar: change stroke width, stroke style and color and fill color. The properties bar lets you change also
the font family and size.

Options bar

This bar is located in the left lower part of the Main window.

Here you can activate the repeat action mode; turn on/off the smart guidelines, snap-to-points and
square mode function; enable the grid; set the discrete rotation step; force horizontal/vertical line
draw; and automatically close the drawn paths.

 22

3.2 Selecting Objects

Click on the canvas and drag the mouse to select object(s). If the objects are selected correctly the
selection border shows up and the object properties will be displayed in the Properties window. To
add objects to your current selection press-and-hold the Shift key and click on more objects.

Note: If you drag the mouse from the left to the right, only the objects fully enclosed in the selection
window will be selected. If you drag the mouse from the right to the left all the objects that interact
with the selection window will be selected.

3.3 Drawing Primitives

In the DRAW section of the GUI toolbar you can choose a type of object you want
to draw: line, poly-line, square, rectangle, circle, ellipse, text or load a picture
from file.

 23

Rectangles and Squares

To create a rectangles or squares, click on the Create Rectangle icon in the GUI toolbar (you
can also find it in the menu under Drawing). Click on the canvas, hold and drag the mouse to
get the desired shape and size.

Ellipses and Circles

To create ellipses or circles, click on the Create Ellipse icon in the GUI toolbar (you can also
find it in the menu under Drawing). Click on the canvas, hold and drag the mouse to get a
desired size and shape of the object.

3.4 Creating Text Elements

This feature allows you to add text on the drawing canvas. Click on the Text tool icon in the
main toolbar and then click on the canvas to the desired point. This will open a new window
for the text input.

Type in the text to be displayed and click on OK. The text is now placed on the canvas and can be
moved, resized, rotated, etc., like any other object.

 24

Note: The text in the element can be changed any time later - select Properties on the right side of
the window and look at the cell Text.

3.5 Inserting Images

 With this function you can insert images in PNG, JPG, JPEG format.

Click on the Insert Image icon in the main toolbar, then click on the canvas and drag the mouse to
set the picture size. This will open a new window for the picture selection. Navigate to the picture
you would like to add and click on Open.

Figure 1

First, click on the picture icon in the toolbar then click and drag the picture to the desired area and release the mouse button.

 25

Figure 2

Select a picture to import

Figure 3

The picture is now on the canvas and can be moved, resized, rotated, etc. like any other object.

Note: You can import images with their original size by a single-click on the canvas.

 26

3.6 Poly-lines

With this function you can create independent and continuous lines, arcs, splines
or any of their combinations.

Line

Click to set the start point, move the mouse to the end point of the line then click again.

Arc

Click and keep the mouse button pressed from the start point, move the mouse and release the
button at the control vertex point, then click again to set the end point.

Spline

Click on the start point and move the mouse to the endpoint, then click again and keep the mouse
button pressed to form the curve, release the mouse button to finish drawing.

Double-click or press the ESC key to finish poly-line drawing.

 27

When you finish object drawing you will see all control, end and vertex points that you can modify.

Segments editing  

You can add, remove or delete segments from a created spline. Right-click on the Create Spline /
Bezier Curves icon to display the Options menu.

 28

Add segment  

Select a segment you would like to add from the options menu. Click on the control point of the
poly-line where you want to add the new segment.

Delete segment  

Select Delete segment from the options menu. Click on the end control point of the segment you
want to delete

Close path

If this option is active all the poly-lines being drawn will close-up automatically.

3.7 Moving Objects

Select object(s) you want to move. Move the mouse inside the selection border and drag the object
to the desired position.

3.8 Resizing Objects

You can resize object(s) by dragging the selection border.

1) Select an object you want to resize – you will see the blue arrows selection border.

2) Drag the arrows to change size of the object.

3.9 Rotating Objects

1) Double-click on an object you want to rotate, the blue arrows will appear around the
selected object.

 29

2) Drag the corner arrows until you get the desired rotation angle.

Note: You can also change the rotation center of the selected object.

3.10 Skewing Objects

1) Double-click on an object you want to skew

2) Drag the black arrow in the middle to get the desired skew.

3.11 Corner Filleting

The rectangles and squares can be corner filleted.

1) Triple-click on an object to show the blue point in its corner.

 30

2) Click on the blue corner point, hold and drag the mouse to get the desired shape.

3.12 Combining Objects

You can combine multiple simple objects covering each other and together with merge, subtract,
intersect and turn-to-path functions you can create one complex object of arbitrary shape and color.

Merge

This feature can merge two objects into one including the contours:

1) Create objects you want to compose the final object from.

 31

2) Select both objects by mouse.

3) Go to the menu Drawing –> Path operations and select Merge selected objects together -
the two objects will merge into one.

Subtract

This feature is opposite to the Merge function. You can subtract portions of a bigger object to
create a new object of the desired shape.

1) Select objects and make sure the outline is in the desired shape of the final object. Then
select the inner object that you want to remove.

2) Go to the menu Drawing –> Path operations and select Subtract objects.

 32

Now you have got a new cutting that can be formed – use the same steps as described earlier for
objects shaping.

Intersect

This feature creates new objects out of an overlapped area of other two different objects.

1) Arrange two arbitrary objects so their overlapping pieces make a desired shape, then select
the objects.

2) Go into the menu Drawing –>Path operations and select Intersect.

Now you have a new cutting ready to be formed into a desired shape by clicking and dragging the
surrounding dots.

Turn-to-Path

This feature allows objects deforming. Go to Drawing->Path operations->Convert Selected Objects
to General Path Objects. You will see a series of points appear around the object.

Simply drag the surrounding points to achieve the desired shape.

3.13 Fill and Stroke

Graphic objects can be filled (or stroked) with a solid color, linear gradient, radial gradient or
complex pattern.

 33

Change a fill or stroke:

1) Select object(s) whose color you want to change.

2) Click on the Color, Gradients and Patterns button.

3) Choose a solid color, gradient or pattern.

4) Confirm the changes clicking on the OK button.

Solid color

Navigate to the Colors tab in the Resources tab; there are a few options how to create a solid color:

 Swatches - select the color from the pre-defined color palette

 34

 HSB - freely mix your desired color; you can determine the color by HSB or RGB values

 RGB - use this pane if you know the color code in Red Green Blue values

 35

 SVG Colors - select your color from the pre-defined SVG standard colors palette

Gradients

Using the gradients enable you to create your custom color blends and give your objects a plastic
look. You can create smooth color gradations over one or more objects and save them for later use
on other objects.

The Resources tab contains pre-defined linear and radial gradients and patterns. You may create
new gradients and patterns or modify the existing ones.

 36

Linear gradient

The linear gradient function enables you to create horizontal,
vertical and diagonal gradient fills.

You can choose from pre-defined linear gradients in the Resources tab:

 37

When you click on a pre-defined gradient you will see its properties in the right side panel.

You can see the gradient preview in the small top window and if you click on the tab Preview you
will see how the object will look like.

1 Position of color and its mapping to gradient definition

The bottom part of the panel is divided into two tabs, Basic and Advanced:

Basic - you will find all defined colors of a selected gradient

 Each color has following properties:

Color - sets the color and corresponding color code

Opacity - specifies the alpha channel (transparency)

Position - specifies the starting point of this color

Advanced - you can fine-tune your custom gradient; define id, angle and the fill options.

 38

Id - here you can name the newly created gradient

Angle - you can change the angle of the gradient from horizontal to a custom angle

x1,y1,x2,y2 - linear gradients are defined around the bounding box of an object they
fill, x1 and y1 specify the initial point of the gradient of the bounding box,
x2 and y2 represent the end point of the gradient

Spread method - Pad (basic fill option – no reflection or repeating)

Repeat (repeats the shading)

Reflect (reflects the shading)

Radial gradients

This function operates with circular gradient fills – same principal as for the linear gradients, only
the Advanced section is slightly different:

Id - here you name the newly created gradient

Radius - sets the gradient radius

cx, cy and r define the outermost circle of the radial gradient

fx and fy define the focal point of the radial gradient

Spread method - Pad (basic fill option – no reflection or repeating)

Repeat (repeats the shading)

Reflect (reflects the shading)

 39

Patterns

Different objects or images can be used as a padding of other objects. myPROJECT Designer lets you
choose from pre-defined useful patterns or create new ones, either by modification of the existing
ones or importing from a file.

3.14 Rulers and Guides

Rulers

Rulers help you accurately place and measure objects on the canvas. The common ‘0’ point of both
horizontal and vertical rulers is the root.

 40

Figure 4 Creating Guides

Guides

Guides help you align text and graphic objects. You can create ruler guides (straight vertical or
horizontal lines) to align the objects. To create a new guide, click on any point on the ruler, the
created guide can be later moved. You can set its exact location or delete it by the right-click.

Smart Guides

Smart guides are temporary orthogonal snap-to-point guides that appear when you are creating or
manipulating with objects. They help you align, edit, and transform objects in respect to other
objects.

Snap-to-Point

Snap-to-point guides are temporary bullet points that appear when you are creating or
manipulating with objects. They help you to snap your object to other objects.

 41

Grid

The grid displays behind your graphics on the canvas but does not print to the project
visualization – objects align automatically when the grid is active. You can activate or
deactivate it from the Display menu or the Options bar.

Grid settings

Here you can set the grid parameters like color, stroke style and the grid step.

Go to the menu Display –> Grid settings.

 42

3.15 Layers

When creating complex visualizations it might get challenging to keep track of all your
items on the canvas. The smaller items might get hidden under the larger ones and working

with all objects becomes difficult. Using the layers can help you manage all the items of your
artwork.

Think of the layers as of transparent planes each containing graphic items that are glued together. If
you change the layers order you change the position (visibility) order of the items on the canvas too.
You can move items within one layer or you can group together multiple items spread throughout
several layers. If you copy objects, then a new object is copied into the layer of the original one.

If there is no object selected the name of active layer is displayed.

Clicking on the layer name will show the list of the layers to be set as active.

 43

If you select an object, the layer containing this object will be displayed and highlighted with green
color on the layer list.

If you want to move objects to a different layer, select the objects on the canvas and select the
desired layer from the list.

3.16 Copying and Pasting Elements

Paste to same location

This function is used for pasting objects being copied into the same location on the canvas - it is
best utilized for specifying more parameters for one visible object, such as a button.

Begin with creating an object and click on Edit -> Copy. Now paste the object being copied by
clicking on Edit -> Paste to same location (you can also right-click on the object and select this
function). This operation can be repeated as many times as you need.

Note: You can verify that an object has been pasted successfully by moving it aside and then moving
back by clicking on Edit -> Undo.

Paste dimensions

This feature allows you to paste specific dimensions of currently selected objects. Select an object
whose dimensions you want to copy. Then select an object you want to apply the dimensions to by
clicking on Edit –> Paste dimensions.

Paste size

This function will paste all dimensions.

Paste width

This function will paste only the width.

 44

Paste height

This function will paste only the height.

When the function Past dimensions is being applied to multiply selected objects, the dimensions
are transferred to the selection bounding box and the space among the objects is accordingly
scaled.

Paste size separately

This function allows you to apply dimension to multiple objects at one time.

In the following example we will copy the left square and then resize the remaining rectangles:

1) Create multiple objects and then copy the object of the size you want to apply to the
remaining objects.

 45

2) Select the remaining objects.

3) Open the Edit menu; select Paste dimensions - Paste size separately (you can also right-click
on the object and select this function). All objects are now of the same size.

Paste width separately

This function allows you to change the width of multiple objects at once as described in the
previous example.

Paste height separately

This function allows you to change the height of multiple objects at once as described in the
previous example.

3.17 Objects Order

Graphic objects use a hierarchical order. If two objects overlap, the one located in the
higher layer overlaps the other one located in the lower layer. You can change the object
order by raising them up to the top or lowering down into the background.

Example:

1) Create a new object and use Edit -> Copy and Edit -> Paste on same location twice. Now you
have three rectangles of the same size. For easier visualization fill each object with a
different color (function Properties – Fill – Color) and drag the objects so they partially
overlap.

 46

2) Now click on Transforms -> Order to change the objects order and use one of the functions
below:

Lower to the background - moves a selected object into the background so that all other
objects are on the top

Raise to the top - moves a selected object to the top so that all other objects are beneath it

Raise - moves a selected object one level up

Lower - moves an object down one level down

3.18 Grouping

Grouping elements

You can compose your graphics from multiple elements. Moving or copying these graphics might be
difficult, but to simplify these operations you can group multiple objects together so you can use
them as a single unit.

 47

 group selected objects together

 un-group selected object

 enter group - changes objects inside the group without un-grouping

 exit group - end enter group mode

Select the objects to be grouped and click on the icon in the toolbar (or select from the menu
Edit). The objects are now grouped and behave as one object – the group can be moved, resized,
rotated, skewed etc.

Selected objects: Group elements:

Ungrouping elements

This function is used for dividing a grouped object back into elements.

Select the grouped object and click on the icon in the toolbar (or select from the menu Edit) and
the object will divide into its elements.

Grouped elements: Ungroup elements:

 48

Enter group

With this function you can work with individual objects that are grouped. You can work with each
object individually without ungrouping.

1) Select a group of objects.

2) Click on Edit (shortcut Ctrl+E) and select Enter group.

3) Now you can work with any object in the group individually.

 49

Exit group

Once you have finished working with the objects in the group you can leave the group by clicking on
Edit -> Exit group (or shortcut Ctrl+Shift+E).

3.19 Repeated Actions Mode

This mode allows you to continue drawing the same type of objects without having to re-
select the object type or shape each time you draw it.

Click on the Repeated actions mode icon in the lower options bar and select an object to draw.

3.20 Visual Scripts

Click on the Scripts icon in the toolbar to open a new tab with scripting editor. For more
details please see the chapter Server-side Scripts of this manual.

The Script icon has a context menu with which you can open a current view script in the editor,
delete an existing script or clear all defined script variables. Use the right-click to activate the menu.

 50

3.21 Used Tags

 This function lists all tags used in an active view.

3.22 Live View

With the function Live View you can load only an active view into your device. This function
is serves as a quick test / preview of active views without loading the whole project.

Click on the arrow next to the Live View icon and open the list of all available devices. Select one of
them to set it device as a Live View recipient. Clicking on the icon sends a current view to a
previously selected device. This device will remain selected as the Live View recipient until another
device is selected. Remember that selected devices need to be connected to your local
network/VPN, to be able to receive the Live View. This function is currently available to iOS devices
only.

3.23 Zoom on Zone

This function zooms a selected area into a whole workspace. First click on this icon in the
toolbar, then click and drag the mouse on an area you want zoom.

 51

3.24 Undo and Redo

The Undo button allows you to revert your action by one step back. You can find it in the
toolbar or in the menu Edit. You can also right-click on an object and select this function.

The Redo button allows you to move one step forward after using the Undo function, you
can find it in the toolbar or in the menu Edit. You can also right-click on an object and select
this function.

Note: If these buttons are grayed out it is not possible to use them for that moment.

3.25 Adding Components and Icons

On the right side of the workspace there is a panel, called Library with Components and Icons. All
pre-loaded library items can be accessed with selectors in this tab.

From the context menu you can click on the Components tab and the scroll preview list will show
up. Each specific icon or a component can be dragged from this list to the canvas and used for
visualizations.

Editing components

If you need to edit any component, e.g. change its center or a color of some parts, select this
component and click on the Enter group button in the GUI toolbar (see the picture below).

 52

Now, the elements of a selected component are accessible. If the desired element is grouped with
others, use the same procedure as described above to enter the required sub-group.

To change colors of the selected element, use the properties toolbar.

When all required editing is done click on the icon Exit group in the GUI toolbar.

 53

3.26 View Properties

If you select a view from the project tree its properties will show up in the Properties window.

 Following options are available:

 54

 change view name

 change view description

 select another default connection for the view

 change refresh rate

 change “Parametric view” property

 Enable/disable runtime zoom for the view

 Set Access Rights

View Access Group: Sets the minimal level of access for viewing.
Write Access Group: Sets the minimal level of access for writing to PLC.

 Persistent read – enables persistent read–to–read all the data from the PLCs even if a
view is not being viewed by anyone, this option is useful for a fast view refresh when loaded.
However, heavy usage can lead to a slower reaction of the system as more data is read from
the PLCs continuously.

3.27 Error Box Properties

You can define a graphic representation of an “offline” error for objects tied with the tags for
animation. When such tags cannot be read from the PLCs, mySCADA will display an error box
around such objects.

In the Error Box properties you can define the look error boxes in your project.

Select the Views folder and its properties will appear in the Properties window:

 55

Set the fill color, fill opacity, frame color, frame thickness and opacity of the Error Box. With the
parameters Rx and Ry you can change softness of the Error Box corners.

For example, if you fill the Error Box properties with the parameters below the communication error
will be displayed as follows:

 56

4. Layout Views

4.1 Page Layout

The Layout page defines the arrangement and style of the page content. In myPROJECT Designer
you can create multiple, user-defined layouts. Each view you create can use different layouts.

Note: You can create new layouts at any time during the project creation.

Header - top section used for displaying a logo, name, logged user, main menu etc..

Main Content - section displaying your views, it sits prominently in the middle of the page

Sidebar Left/Right - columns on both sides of the main content section used for displaying
additional menus, pictures etc., or can be used for control buttons and gauges

Footer - bar spanning across the page bottom

Note: To use the Layouts, first you have to create Layout Views. The Layout Views behave exactly the
same as regular views therefore you can apply any functionality there, such as animations, effects
and visual scripts.

 57

4.2 Adding Layout View

1) Select Layouts -> Layout Views
2) Click on the Add Layout View icon in the main toolbar
3) Enter the name and description
4) Define the orientation and select the layout size

4.3 Creating New Layout

After you have created views you can use them for the layouts:

1) Select Layouts in the Project Window

2) Click on the Add Layout icon
3) Enter the name and description and click on Add

 58

After creating a new layout, double-click on it to fill in its properties:

For each section you can select a corresponding Layout View. After you have selected a required
view, do not forget to tick off the Enabled box to activate it.

Options for each section:

 Spacing - creates spaces among the sections, defined in pixels

 Enabled – tick box to enable particular sections

 Scaled - makes the section scaled according to the rest

 Sliding - makes the section hiding; in the runtime user can open it in by clicking on the tab at
the section center

Overlay section

In this section you can put one or more layout views above existing ones. This can be useful for
showing messages or images tied to a visibility animation – instead of copying these messages or
images into all views you just add them to a layout view and use as an overlay for all the views.

4.4 Using Layouts in Views

1) Select the view you want to apply a layout to

 59

2) In the Properties window select Layout from the drop-down menu

 60

5. Entering Tags and Expressions

5.1 Entering Tags

Before linking your visualizations with PLCs, first you have to enter the name or address of the tags
you wish to read/write data from. The tag syntax depends on the PLC type, which you want to
access.

Note: You need not enter full tag syntaxes all the time. Instead, you can use a symbolic simplified
link to your tag, called Alias. The Aliases can be defined in the Tag Database.

You can type the tag directly in the tag edit field:

You can call the tag editor by clicking on the ... button on the right side of the tag edit field - a new
dialog window will show up:

The Tag Dialog will guide you through tag entering and will check if the syntax is correct.

 61

5.2 Entering Mathematical Expressions

Instead of writing the tag name, you may enter mathematical expressions. This way you can scale
and offset the values read from the PLCs or create more complex data processing. These
expressions can be entered either directly or through the dialog window.

In the equations you can use operators + - * / and common mathematical functions such as sin, cos,
exp, etc... Also you can do binary comparison and much more. To get the complete list of options
call the Tag Dialog and click on the tab Equation.

Formatting & Limits

 Tag name is entered by adr() function

 Tag name can be also entered as alias using the alias() function

 You can use only supported functions and operators

The supported functions and operators are listed under the input box into five groups: Oper, Func,
Trig, Vers and Const – they will insert into the box above if selected

You can use multiple tags in an expression.

 62

Example:

1) We read a value from Modbus H:0

2) Let us scale this value by 10 and offset by 0.5

3) Formula to enter is “=10*adr(H:0)+0.5”

Supported functions and operators:

Operator Function Description

Standard Operators

+ add addition and unary positive

- r − subtract and negative subtractionand negation

* o × multiply multiplication

 r÷ divide division

 percnt modulus andpercentage of a value

! factorial factorial

** pow exponential

° deg converts values to radians

Bitwise Operators

& and bitwise and

| or bitwise or

^ xor bitwise xor

~ not bitwise not

<< lshift bitwise left shift

>> rshift bitwise right shift

Comparison Operators

 = l_eq equal

!= l_neq not equal

< l_lt less than

> l_gt greater than

<= or ≤ l_ltoe greater tha orequal

>= or ≥ l_gtoe greater than or equal

Logical Operators

&& or ∧ l_and logical and

|| or ∨ l_or logical or

! or ¬ l_not logical not

Degree operator °

The degree operator (°) is very useful when converting a user input. Because all of the trigonometric
functions require their parameters to be passed in radians, the degree operator will convert its
operand into radians. Thus, 45° is equivalent to dtor(45).

 63

Percentage sign %

When the percent sign is interpreted as the modulo, then:

10 % 3

... evaluates to 1 (the remainder after 10 is divided by 3) however, if you flip the switch to make the
% sign to stand for percentage, then you do:

250 + 10%

By default, % is usually shorthand for "/100". In other words, 42% becomes 42/100, or 0.42.

However, if the % term is the right-hand sign of subtraction or addition (such as in "250 + 10%"),
then the percent is evaluated as percentage of the left-hand side (i.e. "250 plus 10% of 250").

If you choose to interpret the percent sign as the modulo operator, you can still request a
percentage by using the function name directly:

(10 % 3) + percent (50) = 1.5

Factorial and Logical ‘Not’

Differentiating between factorial (!) and a logical not (!) is more difficult. A “!” is interpreted as a
logical not if:

it is the first token

it is preceded by a binary operator

it is preceded by a right associative unary operator

Otherwise it is treated as a factorial. A ¬ token is always treated as a logical not (for obvious
reasons).

Supported functions

Functions using more than 1 parameter:

 sum() - returns a sum of the passed parameters

 count() - returns the number of passed parameters

 min() - returns the minimum of the passed parameters

 max() - returns the maximum of the passed parameters

 median() - returns the median of the passed parameters

 stddev() - returns the standard deviation of the passed parameters

 average() - returns the average of the passed parameters

 64

 random() - returns a random integer. Can take 0, 1, or 2 parameters. The first parameter (if
given) is the lower bound of the random integer. The second parameter (if given)
is the upper bound of the random integer.

 nthroot() - returns the nth root of a number, for example, nthroot(27,3) returns the cube
root of 27, or 3.

Functions using 1 parameter:

 sqrt() - returns the square root of the passed parameter

 log() - returns the base 10 log of the passed parameter

 ln() - returns the base e log of the passed parameter

 log2() - returns the base 2 log of the passed parameter

 exp() - returns e raised to the power of the passed parameter

 ceil() - returns the passed parameter rounded up

 floor() - returns the passed parameter rounded down

Trigonometric functions:

 sin(), cos(), tan()

 their inverses (asin, acos, atan)

 their reciprocals (csc, sec, cotan)

 reciprocals of the inverses (acsc, asec, acotan)

 hyperbolic variations of all the functions above (sinh, cosh, tanh, asinh, acosh, atanh, csch,
sech, cotanh, acsch, asech, acotanh)

 versine functions (versin, vercosin, coversin, covercosin, haversin, havercosin, hacoversin,
hacovercosin, exsec, excsc, crd)

 dtor() - converts the passed parameter from degrees to radians

 rtod() - converts the passed parameter from radians to degrees

Functions using no parameters ("constant functions"):

 phi() - returns the value of ϕ (the Golden Ratio), also recognized as ϕ()

 pi() - returns the value of π. Also recognized as π()

 pi_2() - returns the value of π/2

 pi_4() - returns the value of π/4

 tau() - returns the value of τ. Also recognized as τ()

 sqrt2() - returns the value of the square root of 2

 e() - returns the value of e

 65

 log2e() - returns the value of the log base 2 of e

 log10e() - returns the value of the log base 10 of e

 ln2() - returns the value of the log base e of 2

 ln10() - returns the value of the log base e of 10

The parentheses are used for grouping sub-expressions and setting the order of execution, and can
be nested to any depth. All computation is carried out with a double precision floating point. In case
of error the editor shows a warning and the error expressions will not be evaluated.

You can always check validity of entered expression Clicking on the Test button.

Click on OK after completion to see the expression in the Tag(Address) field.

Examples of valid expressions:

 adr(N100:0)*adr(F30:10)

 sin(adr(N100:0))+cos(adr(F30:10))

 median(adr(N100:0),adr(F30:10),adr(N20:5),adr(F10:10)) – multiple arguments should be
separated with commas.

Note: 2>=1 logical operations always return binary result (0 or 1).

 66

6. Tag Database

This feature is very useful for management of all tags and connections. You can start creating your
project with creating the tag database and design the visualizations afterwards.

If you write a new tag anywhere in myPROJECT Designer, a dialog box will show up for adding this
tag to the Tag Database:

Note: Instead of writing ‘mytag@PLC’ you can use the
alias ‘motorName_A1’ anytime.

Click on OK to confirm adding the tag to the database. When the tag is created you can use its Alias
as a reference.

 67

7. Linking Views with PLC

There are two options to link your visualization with the PLC:

Animations

With animations you link the visual appearance of graphic objects with real values read from the
PLC. The visual change is reflected immediately, e.g. you can show PLC tag/variable values in a text
element; change the fill and stroke color of an object etc.

Effects

With effects you add dynamics to graphic objects. An effect is the visual appearance of an object in
a specified time sequence and can be triggered either by a tag/variable from the PLC or user’s
action, i.e. finger tap or mouse click.

Example:

Imagine you want to display a blinking motor on your visualization if the tag/variable read from the
PLC is equal to 1.

1) Set the Blinking effect on the motor by specifying the blinking speed and infinite repeat. This
way the motor will be blinking as long as the tag read from the PLC is equal to 1.

2) If you use the Color animation instead, the motor will change its color if the value read from
in the PLC equals 1 and returns back to normal when the value is 0.

Figure 5 Difference between effect and animation

 68

7.1 Animations

Getting started with Animations

In the picture above you can see examples of data reading from the PLC and its application to get
color, scale, opacity, rotation and text animation. Create and select an object you want to apply
animation to:

 69

After selecting an object you will see Anim section in the Properties window where you can find
available animations for the selected object.

Show value

This animation can display tag values in a text element.

Example:

1) Let us assume there are 3 tags in ControlLogix PLC, representing the water levels – level1,
level2 and level3.

2) Create the text elements for these three water levels using the Create Text Element tool .

3) Continue with adding the text elements, responsible for reading values from the PLC. This
process is exactly the same as creating of the text elements. The text written to the text
element specifies how the value read from the PLC will be formatted on the screen. The
format specification is described in the following figure:

Note: Any value received from the PLC that does not follow the format specification will be
automatically transformed to a set format. For example, if the PLC returns a value of 3.47 and the
visualization expects only one decimal place with the format (##.#), then a displayed number will be
rounded to one decimal place showing the value of 3.5.

 70

4) Connect the text elements to specific PLC tags.

Click on the text element that should be animated, according the data received from the
PLC. You will see the animations properties in the Properties window. Select the Anim tab, in
the Show Value animation section; enter the specific tag address that the text element will
read from.

Note: If the entered tag address is invalid, the text will be marked as red.

5) Upload the view to your supported device - the screen should look as follows:

In the previous example we used the tags from ControlLogix. You can generally use tags for all
supported PLCs, as long as you use a proper syntax (for a brief description of proper tag syntax see
the chapter Basic Tag Syntax).

You can also combine a static text element with PLC values, read through the function Get
Animation.

Example:

 71

1) Let us create a text element “The current level of the 1st tank: ###.###” and duplicate into
other two elements.

2) Now, after configuring Get animation in the way as described above, you will see the same
visualization as for the text elements and values.

General

Id – each newly created component has an automatically assigned id, a unique identifier that
can be overridden (renamed), you are forced to give each component a unique
meaningful name

Type – indicates the component type, cannot be edited

You can combine multiple animations on the same object.

Options

Type

With this option you can display data in 3 ways:

 Value - shows numerical values from the PLC

 72

- Decimal
- Hexadecimal
- Octal
- Binary

 String - shows string/text values from the PLC

This enables you to read array data from the PLC and show as a string.

Automatic

The PLC type used in the tag definition selects the string type automatically

Rockwell: Rockwell family string, the first element in an array corresponds to the string length, the
rest are ASCII encoded characters.

Siemens: Siemens family string

Modbus: Modbus family string, every 16-bit register corresponds to one character
(encoding UTF-8), the string should end with 0.

User defined

You have a complete control of converting a PLC data array to a string. First of all you should specify
the maximum length of the string. Then you can specify which character terminates the string or
specify at which position the length of the string is encoded.

 73

 Date - This enables you to read data array from the PLC and convert to the current date.

Rotate animation

The rotate animation is a feature that allows you to rotate an object around the set axis, according
to percentage of maximum and minimum values from 0 to 360 degrees (can be redefined by the
Range parameter).

Enter the tag name and the minimum tag value, which correlates to the 0th degree; and the
maximum tag value, which correlates to the 360th degree.

Example:

By default the rotation axis is in the geometric center of an object or group. You can change the
rotation axis double-clicking on the object and set its axis, which is marked as a blue dot. Move the
selected point to the desired position, as shown in the picture below:

With the set rotation axis you can create an animation to get arrow of the circular gauge revolve
according to the input tag value. Go to the Rotate section of the Anim tab in the Properties window
and fill in the Tag (Address), Minimum and Maximum values.

 74

Set Center property can be set to

Clear Center – clears the custom rotation center and sets to the default (geometrical) center

Cancel – closes the menu without any changes

Center Offset X (Y) fields show the difference between the custom and geometric rotation center

Center X (Y) fields show the absolute coordinates of the selected rotation center

Range property defines the total revolution angle, which is 360 degrees by default

Visibility animation

This allows you to control visibility of an object. There are 3 inputs required for this animation: Tag,
Min and Max. When the value is within the min and max values range the object will be visible,
otherwise it will be hidden.

To animate visibility, based on the discrete (Boolean) value set Min and Max to 1. This way an
object will be visible when tag value equals 1 (TRUE).

Example:

1) Click on an object, which you want to animate – this will prompt the properties in the Anim
tab of the Properties window. From here navigate to the visibility section.

2) Set the Tag (Address) and the Minimum and Maximum variables – if the tag value is within
this range, the object will be visible otherwise it will be hidden.

 75

Size animation

This animation type is used for changing the size of an object, in correspondence with the entered
value.

Example:

1) Select an object you want to animate. You can control the direction in which re-sizing will
take effect (left to right, right to left, top to bottom, bottom to top).

2) Go to the Size section of the Anim tab in the Properties window and fill in the Tag (Address),
Minimum and Maximum properties. The Maximum property will correlate to the original
height of the object. If an actual tag value overcomes the set Maximum value the animation
stops at 100% the object’s size, the Minimum correlates to the height equal to 0, if the tag
value goes below the set value the size will stop at 0%. The orientation parameter controls if
the change in size is in horizontal (width), vertical (height), or in both directions.

Horizontal direction

The base point of an object is located in the left edge and its width increases in the left-to-right
direction. If you want to reverse the direction from left-to-right to right-to-left rotate the object by
180 degrees.

Vertical direction

The base point is located on the top edge and its height increases in the top-down direction. If you
want to change the direction from top-down to bottom-up rotate the object by 180 degrees.

 76

Color animation

This animation displays a certain color when the associated tag is in an acceptable value range. You
can enter multiple conditions to achieve multiple color changes with one animation. The conditions
are evaluated from top to bottom; therefore the bottom condition has a higher priority.

To animate colors based on a discrete (Boolean) value set Min and Max to 1. This way, an object
will be visible when the linked tag value equals 1 (TRUE).

Example:

1) Select an object you want to animate, click on the Color tab in the Anim section in the
Properties window and then click on the … button.

2) You will see a new dialog window, click on Add and fill in the Tag, Min and Max values. You
can have multiple conditions. If the tag value is 0 the object will be colored red, if the value
is 1 it will be black. Click on OK to confirm.

Examples of color animations

 77

Buttons

Traffic lights

Fans

Valves

Motors

 78

Move animation

This animation is a programmed motion of an object along a defined path, based on the tag value.

Example:

1) Create an object and a path to move this object along. To add the Move animation select the
object and click on the Active button in the Move animation tab of the Properties window,
as indicated in the picture below:

2) Fill the tag address in the dialog window and select one of the paths available. Be aware that
only UNCLOSED paths can be used for the Move animation.

The other available options are:

Visible – move path remains visible if this option is enabled

Length – represents the length of a selected path, filled automatically and can’t be edited

Absolute – this option tells mySCADA engine to map the whole path length for the Move
animation up to the tag value of 1:1

 79

Relative Positioning – this option allows using only a certain tag value threshold. The Min
value represents the starting animation point (the object moves only
when the tag value reaches this point), the Max value represents the
ending animation point (the object moves to the the end of the path
when the tag value reaches this point). The

Reverse - reverts the movement from start-end to end-start

Note: A typical use of the Move animation might be moving objects on a conveyer belt etc..

Sound animation

Thus animation can be used for notification of non-standard situations or voice announcements.
You need to import sound files before you start to create the Sound animation, read the Sound
chapter to find more details about the importing process and limitations.

Example:

1) Create a new element of any kind and click on the Anim tab in the Properties window.

 80

2) Select the Sound animation.

In the dialog window you can set:

 Sound files to be loaded

 Severity (priority), in case of simultaneous occurrence of multiple sound animations sound
with numerically the highest severity will be played

 Repeat Count – number of repetitions of selected sound during animation

 Volume – defines relative volume (from system maximum) of a played sound

 Start by – sets the trigger of the sound animation:

Tag – sound will play once the selected tag value reaches the set range

on Click sound will play if you click on the object

on Down – sound will play if the object is pressed (click-and-hold)

on Up – sound will play if object is released after click or press

 Minimum and Maximum fields set range for tag value, when animation will be activated.

3) Click OK once you have set all the required parameters.

With illustrated settings sound will be played when tag value will be in range 150-333, with 3
repetitions of selected sound.

 81

Sounds

You can create a sound animation, which will play loaded MP3 files on defined occasions.

Note: Maximum size of the MP3 file is 3.5 MB.

Sound import

1) Select the Sounds folder in the project tree and click on Import in the main toolbar or right –
click on the folder and select Import from the context menu.

2) The Import Sound dialog will appear.

3) Select the MP3 file from available folders.

4) The sound file will be loaded into the Sounds folder.

Note: If you wish to delete a sound file, select it from the Sound folder and click on the Delete Sound
icon in the toolbar or select the Delete command from the right-click menu.

 82

7.2 Effects

With effects you can add dynamics to your graphic objects, as described in the previous
chapter (see difference between Animations and Effects).

1) Select an object you want to set effects on and click on the Effects button in the GUI toolbar.

2) A new dialog window will show up.

Note: If you do not select any object (or select more than one), list of all objects with effects will be
shown.

 83

The effects make the graphic visualization less static and their function is similar to animations,
however they do not reflect the real state of a technological process. We advise using the
animations for visualization of a precious technology state, and use the effects for visualizing the
real-time change of objects.

The states of objects during an animation are based on actual values obtained from the PLC, for
example: the motor rotation visualized through Animations behaves according to the values
obtained from PLC, but the rotation visualized with the Effects is based on the values set by
yourself, and will use the “hard” data only as a trigger.

The effects are grouped into 7 predefined categories with custom, user-defined settings.

Rotate – different rotation effects

Move – dynamic movement along the x and y axis

Opacity – dynamic visibility animation

Blinking – special visibility effects that allows visualizing blinking of object

Fade – fade object visibility in and out

Color – change of an object color by morphing from the initial to the final

Stroke – change of an object stroke, improving perception of a selected object.

 84

 Animate button – allows you to see a preview of the selected effect.

In the context menu you can set the effect trigger:

Tag – effect will be activated when selected tag value will reach given range

on Click – effect will be activated when object is clicked

on Down – effect will be activated when object is pressed (click and hold)

on Up – effect will be activated when object is released after click or press

If you select Tag from the trigger menu, set the tag address and the range of the Min and Max
values.

Note: If you select the User action trigger the fields mentioned above will not be available.

The Fill option lets you specify an event upon the end of an effect:

 Freeze – leaves an object without changes

 Remove – returns appearance of an object to its initial state (before animating)

Duration slider – sets duration of one effect cycle.

Rotate

You can choose from two preset effects:

 CW (Clock Wise)

 CCW (Counter-Clock Wise)

Additional options can be set for User-defined effects, where you can set duration of a single
rotation cycle, number of repeated cycles (or infinite rotation) or different angular velocities for
different parts of the rotation cycle.

Repeat No. – allows setting number of rotation cycle repeating

Continuous – sets effect to an infinite loop

In the next block you can set duration for each cycle segment, you can add, remove and edit the
fragments.

Example:

The following illustration shows the rotation effect, triggered by clicking on an object. It will last for
4.9 seconds and repeat three times. Rotation from 0 to 180 degrees will take 60% of the total time,
resulting in a jump of the rotation speed.

 85

Opacity

This effect changes visibility of an object. It has the same properties as the Rotate effect, which are
described in previous paragraph. Transition settings are similar to that of the Rotate effect, but
instead of the rotation speed it sets the speed of visibility change. For each change point the
Position column should be filled with a value in the range of [0 , 1], where 0 means transparent and
1 means fully visible. The Time column allows to set duration of the transition between two change
points. You can add, remove and edit fragments with the button right below the fragments tab.

There are two preset effect: Show and Hide that make a smooth visibility transition of an object in
the set time. There are also additional slots for User-defined effects, where you can set duration of
the effect cycle, number of the cycle repetitions and the transition speed between visibility states.

 86

Blinking

This effect periodically changes visibility of objects. There are three preset effect: Slow, Medium
and Fast that allow to set frequency of blinking. There are also additional slots for User-defined
effects where you can set duration of the effect cycle.

Color

This effect changes the color of objects. There is one preset effect: Fill, which makes a smooth
change of the fill color in the set time. There are also additional slots for User-defined effect, where
you can set duration of the effect cycle and the transition speed between colors.

For a predefined Fill effect you can set the target color to which the fill will change from the initial
color set in the Properties. In the User-defined presets you can set different colors to be used.

Stroke

Those effects are very similar to Fill effect, they also change color but of object stroke instead of fill.
Settings are same, as in predefined Fill effect. Please note that object needs to have stoke-width set
higher than 0 for effect to take place.

Note: You can combine multiple effects on the same object, but please be aware of overlapping
behavior in such case.

 87

7.3 Time Sequence

Time Sequence is a simple to use and extremely powerful function that adds timed animations to
the views. The Time Sequence editor is implemented in the GUI editor and allows you change
graphic properties of your objects in specified time intervals. myPROJECT Designer automatically
computes the transitions between the time intervals.

You can open the time sequence editor by clicking on the Time Sequence icon, located in the
toolbar.

The GUI editor automatically adds the Time Sequence toolbar to the Main Window.

Creating a time-sequenced animation is very easy. You just move the time slider and for each time
position modify the graphic objects as you want them to appear at these time positions. The smart
algorithm inside the myPROEJCT Designer runtime will compute the animation so it is time-fluent.

Example:

 88

Now if you play the animation the object on the conveyor will move.

Additional options

Trigger:

 Time the view is shown at
 Tag read from the PLC or a virtual (script)
 Click on any graphical object

Timing:

 Overall duration of sequence
 Time offset of the sequence start
 Number of repeats (or choose continuous)

 89

 90

8. Open/Set command

The Open/Set commands group combines the Open command that opens views, Documents and
other objects with the Set command, which is used for writing values to the PLC.

Select any object in the view, than open Sets tab in the Properties window.

8.1 Open Command

This command is used for navigation among the HMI screens, e.g. you can open other project views
from currently open ones.

The Open command prompts opening of other views and can be applied on any object. It can be
used for attaching a detailed visualization to the whole process visualization, i.e. you can switch to
detailed views of certain parts of a technology group.

You can configure objects to open a new screen by selecting them and proceeding to the Open/Set
tab in the Properties window.

Note: It is possible to open the previous windows or any other created views of the project.

 91

The Open command section properties are:

Active – check this box to activate the Open command.

Open – set or not set, press the … button to show the Open Dialog to set the parameters

 – select the view type that will be opened by the command, available settings are:

Window – another view will be opened

Parametric Window – parametric window will be opened

Trend – trend will be opened (iOS only).

Advanced Trend – advanced trend will be opened

Document – opens one of the project documents, index sets on a page
document will be opened.

View – select a view that should be opened by the command, choice of options depends on the
view range, already defined in a current project and the selected Open property, when
Open is set to Window only the views will be available for selection, on Open set to
Trend you will be choosing from available trends only etc.

Page – this property is relevant to the Document command where you set the page number,
which your document should be opened on

Open in New Window (Faceplate)

1) To open in a new window, click on the ... button next to the New Window button

2) A new dialog window will show up - here you can specify additional parameters:

 92

Location – sets the location of a newly open window

 Default: show window at the center

 Absolute: set absolute coordinates of top left corner

 Relative: set relative offset to current mouse position

Size – size of a newly open window

 Default: original size of window

 Scaled: scale window to set percentage

 User Defined: specify new dimensions of opened window

Open document

This function is useful when you need to link some part of your visualization with some document.
For example you can attach maintenance manual to controlled device visualization, so operating
person would be able to access required information in a much convenient and faster way.

 93

Example:

The following attached document will open on the page 45.

 94

9. Set Command

9.1 Writing Values to PLC

It is possible to configure some objects to actually write new values to the PLC. The ability to toggle
a specified bit, write a static predefined value, write any value given by the user or write any value
given from multiple choices from a user-created list are all possible.

There are three types of triggers available for each object and each of them can have its own
dataset to write. The data can be written on on Click, on Up and on Down actions. On Up and on
Down triggers are independent, so you can write two different sets of data with one button by
applying different actions to it.

 on Click – Set command will be activated when an object is clicked on

 on Down – Set command will be activated when an object is pressed (click and hold)

 on Up – Set command will be activated when an object is released

All three triggers have the same properties. See the on Click command description below:

You should set the tag address first, with the parameters Scale and Offset you can change user
input before sending to the PLC.

You can add any message you want to prompt on using the Set command. If you want no
confirmation prompt upon write – leave this field blank.

If you want the write command to be logged tick off the Log checkbox and fill the message field.

Values for the Set command can be obtained in several different ways:

 Value – static set value will be send to the PLC

 95

 Toggle – binary switch, set 0 to 1 and 1 to 0, should NOT be applied to non-binary variables

 Numeric – prompts a dialog in the visualization, where the user can enter any numeric value,
there are options to treat such dialogs as password input (hiding input values), and to set
allowed range of inputs with Min and Max limits and a number with decimal places

 String – prompts a dialog in visualization, where user can enter any string value, there are
options to treat such dialogs as password input (hiding input values), and to set allowed
number of letters with Min and Max limits, predefined text can be set also with Predef. Text
option

 Slider – prompts a dialog in visualization, where user can select any numeric value with a
slider, additional options allow setting Min and Max limits of the slider value, the decimal
places allow precision between two slider states

 Multiple choice – prompts a dialog in visualization, where user can select one of the
predefined values, which should be entered as tag value/text pairs during the animation
setting

 96

 Value from text item – writes a value to the PLC/variable from the text element on the
screen

Writing predefined value

Objects can be configured to write a predefined value to the PLC when they are clicked on.

1) Select an object and click on Open/Set tab in the Properties window and in the Set command
section select the On Click tab - the On Click dialog window will appear.

2) Click on the Value tab, enter the tag name/address and, if desired the Prompt message.
Finally enter the value you wish to send to the PLC and click on OK.

Writing value from predefined list

This configuration can be selected when selecting the Multiple choice tab and filling the table with
possible values along with corresponding texts that will be displayed in a dialog during visualization.

Example:

 97

Clicking on zero sends 0 to the PLC, while the full button sends 100.

Writing numeric value with slider

The next possibility is to write an arbitrary value to the PLC. To activate this configuration setting
select one of the Set command options and activate the Slider tab. Enter the range of Min and Max
the user will select a value from.

 98

Example:

The picture below shows the configuration setup so that the on Click command prompts the write
dialog where the user can write a value in the range of 0 to 150.

The resulting value will be multiplied by 3 and increased by 33 before writing to the PLC as a result
of the Scale/Offset addition.

Writing to value memory

With the Set command you can also write variables to the value memory of the script. The memory
variable needs to be defined before you add the Set command.

1) Click on the Memory tab to add ‘write value to memory variable’.

 99

2) Select one of the defined memory variables from the list.

The rest of the parameters are the same as for the regular tags.

3) Click on OK to create the Set command or Cancel to leave without change.

 100

10. Parametric Views

Instead of designing multiple similar visualizations of multiple field technology that differs only in its
operational parameters and not appearance, you can use one master view, common for all. You
can set and use the opening parameters to link the views with specific pieces of technology.

Example:

Imagine you visualize a plant with 200 similar motors and instead of designing 200 identical screens
with different PLC links you only create one view. The visualization user can select a specific motor
by entering the desired parameters when opening the requested view.

Specifying opening parameters

You can set the opening parameters in the Index field, the parameter can be a number or string. The
parameters are separated by a semicolon ; .

 101

You can access the parameter value by writing the $Number$ notation, where the number stands
for the parameter position. The first parameter in the example below will be accessed as 1. You
can set the parameter values when specifying the tags.

10.1 Connection Change in Parametric Views

Specify connection for an opened view: you can specify to what PLC your view will link to in the
Connections section:

Again, as with the Index parameter, you can define multiple replacements for your connections. If
you want to set more than one connection, use a semicolon for separation.

10.2 Use of $number$ in texts

You can also use the Index parameter to include any parameter in the text elements:

 102

11. Visual Scripting

myPROJECT Designer offers many tools to perform the most common data acquisition, display,
animation, effects and all of this without coding. For maximum flexibility mySCADA also includes a
complete scripting language based on JavaScript, which allows you to interact programmatically
with most of mySCADA functions with a high level scripting language.

Easy to learn

Scripting can be used for all sorts of tasks. The possibilities are endless as it is designed to be easy to
use, extending the functions of mySCADA. You do not need to be an experienced programmer to be
able to use scripting. Using JavaScript as a scripting language means you do not have to worry about
memory allocations, leaks or complex programming issues. Using is very simple and
straightforward.

Features

mySCADA has many built-in features that can be extended with scripting. If you are starting out, you
can use all the built-in features to acquire data, create graphics, and make dynamic animations, and
other tasks without writing any code. You can then pick one area that needs a little extra flexibility
and write some simple script while still using all other functions. As you get more experienced, you
can take further advantage of powerful scripting.

11.1 Using Script in Views

For each view you can create your own script, which is evaluated every time an active screen is
refreshed. The refresh logic works as follows:

First, if you want to add a user-defined script, open your view and click on the Script button in the
main toolbar. Then the script window will show up where you can insert your user-defined script:

 103

The script editor is divided into 3 main windows:

 Script Window: this is a window where you put the user-defined script

 Variables Window: here you define your view variables

 Useful Functions list window: in this window you can find specific functions, which help you
control your components in the corresponding window.

11.2 Declaring Variables

You can declare your variables in the Variables Window:

There are 4 types of variables to use:

 104

 Input variables: use these variables for reading data from the PLC, each time the script is
evaluated it firstly reads the PLC tags and stores into the input variables

 Output variables: after the script evaluation, v the output variables values are written into
the PLC, you can set if to write the value each time the script is evaluated
or only on change - this is controlled via the Update field (Always, On
Change)

 Value memory: here you can declare your persistent variables, when a view is loaded
memory variable has its default value, you can change this value in the
script and it will prevail until you switch to a different view or close the
application

 String memory: string memory variables are the same as value memory variables but are of
string type

11.3 Writing Script

You can write the script in the Script window. You can use any function or expression from
JavaScript - the editor automatically highlights your syntax and makes an error check.

Using variables in controlling animations

You can use declared view variables in the animations, for linking the view variable with an
animation use the equation editor as with regular PLC tags.

Example:

1) Let us show the value of the Value Memory Variable in a text element in your view.

2) Open the Script window.

 105

3) In the Value Memory tab of the Variables window create ‘InternalVariable’ for example,
with a default value of 10.0.

4) Switch back to the view you are editing.

5) Create a text element in your view, click on it and create an animation with a memory
variable typing “=InternalVariable” or selecting memory variable with the equation editor.

Also you can control animations of your graphic object directly in the script with specific mySCADA
functions. You can find the complete list in the Useful Functions window.

To set the value of the element directly in the script use the following function:

myscadaSetText(‘text0001‘,internalMemory);

 106

 107

12. Documents

With this powerful function of myPROJECT Designer
you can link documents with your project. For
example, you can have user manuals linked with the
components on your HMI screen, or you can even
attach a schema or picture to your project. As a result
you get a complete project in one package consisting
of HMI screens and the linked documentation files.

You can attach any documents directly to your
project by selecting the function Import Document.

Note that all attached documents must be in a PDF
format!

Click on the Import document icon in the
main menu or right-click on the Documents in

the Project Window menu and then select Import.

Once your documents are imported into your mySCADA project, you can link them with any object
on HMI screens. This can be done with Open command function.

 108

13. Creating iOS Trends

Visualization of trends is another important part of the myPROJECT Designer. The same as alarms in
iOS, values used for the trends should be represented as part of an array in the PLC. mySCADA
stores every read value into the built-in database, to create a value archive for each read tag. The
archived values can be later compared with the current values of the same tag. The Trend charts for
each of the watched tags can be also created. It is possible to monitor multiple trends at once as
well as edit, add, and delete trends from the Main window. To see the current trends in the project
navigate to the iOS Trends folder in the Project Window.

To add a new trend to your project select iOS Trends in the Project window and then click on the
Add Trend icon or use the command Trend –> Add New Trend from the right-click menu. Click on
the Add Tag button at the bottom of the main window to add a tag for monitoring, enter the tag
address along with the trend description.

Instead of a raw tag value you can use arbitrary mathematical transformation of the tag value by
choosing the Equation as a form of the tag representation in the Add Tag dialog. You can find more
details about the Equations in the relevant chapter of this manual. You can specify a
physical/mathematical data unite, open or deleting an existing trend etc.

 109

You can edit the trend properties by selecting them in the iOS Trends folder in the Project window.

You can set the following properties:

 Trend name

 Trend description

 PLC connection, used for gathering data

 Refresh rate for the trend (same as for the view)

 No. Of Records – number of elements mySCADA will read from PLC field for this trend (for
Online trends only)

 Sample Period – timescale between samples

 Reverse – inverse order of reading of samples

 View Access – user access level

 Online – check this settings for iOS application trending, otherwise mySCADA Box format will
be used

 mySCADA Box Specific - Datalog No.: defines from which data log the values should be read

 110

14. Creating Advanced Trends

You can easily present your historical data in the form of a historical trend. To do so, firstly look at
the chapter Data Logs to set your data log to retrieve data from.

1) If you have your Data log ready, create a new historical trend by going to the Advanced
Trends folder and selecting a new trend as shown in the following picture:

2) A new dialog window will show up where can fill in the trend name and description. Then
click on OK.

 111

3) Now the new trend ‘myAdvancedTrend’ is created and you can find it in the Advanced
Trends folder of the Project window.

4) Double click on the newly created trend to open it.

5) Click on the Add Pen button in the lower part of the Advanced Trend Definition window:

6) It the pop-up dialog box, you can define your new pen to show. First you should select a data
log from which to show data, then select your data point to show (only the tags from the
selected data log are available):

 112

7) Finally fill in the Description and Unit. You can also change the pen color and confirm by
pressing the Add button. The pen is now listed in the table below:

Note: You can freely add as many pens as you wish, they can read data from multiple data-logs.

 113

 114

15. iOS Alarms

A very important part of mySCADA is the ability to instantly signal any information about dangerous
or other important events with Alarms.

In myPROJECT Designer you can create alarms list specifically for iOS application. For the alarms on
other mySCADA products, you can use the CAS Alarms.

The alarms must be stored as an array data because mySCADA for iOS applications only interprets
array values as the alarms, so the user needs to set up an acceptable range for each alarm.

1) Select iOS Alarms folder in the Project window. First you have to set the Connection and
choose which PLC connections, defined in the project, will be used. Then enter the triggering
tag for the alarm list and enable it by ticking off the appropriate checkbox.

2) You can alter other alarm properties, such as:

Active Alarms in Icon – displays number of active alarms on the mySCADA app icon if the
application is running in the background

 115

Sound on New Alarm – plays system sound when one of alarms became active

Shake on New Alarm – vibrates the device on a new alarm (as long as mySCADA is running
on a device with such function)

Show Active Only – disables displaying of inactive alarms on the alarms list

Sort Based on Severity – sorts the alarms on the list according to their severity

Show Severity up to – filters out the alarms with severity lower than set

Text Filter On – filters out all alarms, except those containing text, filled in the Text property,
in their description

The list of alarms is shown in the Alarms folder of the Project Window. New alarms can be created
by clicking on the Add button located at the bottom of the Alarms window. The alarms can deleted,
shifted down or up on the priority list.

After clicking on Add the window displayed in the picture below will appear. The Bit No. is
automatically filled with index of the bit representing the current alarm in the array of alarm
variables. The alarm Severity level and Description must be filled also (put 0 for the maximum
severity).

 116

Example:

In the following example there are 3 PLCs, where the alarms are read from the PLC 3. The PLC 1
controls the temperature within the range of 0°C to 120°C. To create an alarm on this value you
need to evaluate the temperature readings from the PLC 1 and send the Boolean value to the
prepared array in the PLC3.

The desired temperature lies within the range of 50°C to 80°C, so you create two alarms - for the
high and low temperatures. The first alarm gets the 2nd position in the bit array of the PLC 3 and will
be activated when the temperature falls into the 0°C - 50°C range. The second alarm gets the 3rd
position in the array with the range of 80°C – 120°C. Then create an alarm list with appropriate
descriptions for these alarms.

If the temperature reading gets to 40°C, for example,
PLC 1 sends the value 1 to the bit array element no. 2,
the alarm in will pop-up in the mySCADA application.

 117

16. CAS Alarms

A very important feature of mySCADA is the ability to instantly signal any information about
dangerous or other important events with Alarms. They are important part of most control
applications as they alert operators if something goes wrong.

Alarms can signal that a device or process has ceased operating within acceptable, predefined limits
or can indicate breakdown, wear or process malfunction. Often it is important to keep a record of
the alarms to know if they have been acknowledged.

To define alarms for your project, double-click on the CAS Alarms in the Project
window. For your convenience the alarm definitions are split into two tables,
one for Analog and second for Digital alarms:

16.1 Digital Alarms

Digital alarms are tied to digital values read from the PLC. A digital alarm is either ON (1) or OFF (0).
Instead of the thresholds, digital tags have alarm states 0 and 1.

16.2 Analog Alarms

Analog alarms are tied to analog values read from the PLC. Along with common parameters, which
are the same for both digital and analog alarms, you specify the minimum and maximum values for
your tag or equation. You can also specify the Dead-band region for any value to eliminate false
alarms. The number of alarms tied to one tag is not limited. Also you can define complex conditions,
including multiple tags or mathematical conditions for a single alarm.

 118

Description of Alarm table fields:

Unique ID
Automatically generated ID, needed if accessing alarms from the
Server-side Script

Tag@Conn / *alias Tag (Address) or Equation specifying data read from PLCs

Severity
Unsigned integer value specifying importance of given alarm, lower
the number - higher the priority

Area
You can divide alarms by geographical or virtual area they belong to,
area is a string value which you can use for filtering the alarms

Message Message of your alarm

Device
Name or description of a device the alarm belongs to, one device
can have multiple alarms defined

Inv (Inverse)
Inverts an alarm (if a digital alarm is inverted it will be active at 0, for
analog alarm activation area is reversed)

Hide
Enables hiding the alarm from the user, this is useful when you are
using alarm as a condition in the triggered data-log, hidden alarm is
not shown in the Alarm window and is not logged into the database.

Delay
Specifies the delay in milliseconds of how long the condition must be
active for to activate the alarm, this is the time hysteresis function

Refresh
Specifies how often your alarm will be refreshed, you can use:
default, fast, slow. You can change the refresh values for each group
in the Properties window.

 119

Format Defines how the value will be shown in the alarm table, use the
‘##.#’ format for specification

e-mail Sends an email upon each alarm activation or deactivation

SMS Act Sends a message upon each alarm activation

SMS Deact Sends a message upon each alarm deactivation

G0 - G9 Checks an appropriate user group to receive alarms by email or SMS

Unique ID

Each alarm has a Unique ID, which is created when you define a new alarm and its value is fixed
once the project is put into the runtime mode for the first time. This value is unique for all alarms,
meaning that each alarm has its own Unique ID, which is saved in the alarms' definition file. Once
this ID has been created it will remain until removing the alarm from the definition table.

Tag@Conn / *alias

Each alarm must be connected to a tag or equation. The Tag is the value read from PLC (or your
computed value from script), with Equation you can tie your alarm to multiple tags or evaluate
complex formulas.

 120

You can create multiple alarms tied to one tag, as long as the alarm descriptions are different so
that alarms operate correctly.

Severity

Alarms can range in the severity from 0 (most severe) up to 4 byte unsigned integer value (least
severe), to indicate different levels of importance.

For example, an alarm with severity 10 might warn that a tank is half full of liquid, while another
alarm with severity 5 indicates that the tank is about to overflow. Both alarms monitor the same tag
but have different severity levels.

When you set up the alarm severity, specify what the severity levels mean and what actions they
will trigger. Severity determines the order in which alarms are displayed on the alarm list.

Alarm areas

The alarms can be grouped in different areas so that they can be displayed in the alarm window
based on the area they belong to. This may be helpful to enable you to divide the alarms according
to the different plant zones they come from.

Message

Alarm messages report information about alarms.

Device

You can define multiple alarms for a single device. In the live alarm view or during a browsing of
alarm history, you can filter your data based on device value.

Minimum and Maximum values

Minimum and maximum values are available in analog alarms only (for digital alarms minimum and
maximum is equal to 1). By default, you specify the region when will be alarm active. So if you
would like to activate alarm when the level in tank is equal to 90 and stop the alarm at level 100
your minimum value will be 90 and maximum value will be 100.

Inv (Inverse)

This parameter lets you invert your alarm definition. For a digital alarm, the alarm is activated when
value is equal to 0 and deactivated when equal to 1. For analog alarms, when inverse is active, you
specify by minimum and maximum values the region when the alarm is NOT active.

Recipients (G0 up to G9)

Through these properties you can select the recipient user group to which the message, SMS, E-mail
etc., is to be sent. The user profile, which is defined through the 'Users’ settings, must contain a
telephone number or E-Mail, needed for sending messages.

Dead-band  

With some measured values, such as line pressure, tag values can fluctuate rapidly above and below
a critical threshold. Where such conditions exist, you can create a dead band as a buffer to prevent
the fluctuations from triggering unnecessary alarms.

 121

Specifying frequency of alarm checks

The system does not check for alarms more frequently than the Refresh update rate specified in the
alarm definition.

Match the maximum update rate to the rate at which you expect tag values to change. For example,
if you are monitoring temperatures that fluctuate slowly, check alarms less frequently than with the
manufacturing processes that change rapidly.

You can specify one of tree possible refresh rates: default, slow, fast. Each refresh rate group can be
changed in the Properties window.

16.3 Alarm Window

The alarm window allows the operator to perform complete management of the technology alarms.
This window allows you to visualize the alarms present in the technology or in a restricted area of
the technology.

The alarm window can display all the technology alarms or a set of alarms, arranged by the user-
defined areas. If necessary, the user can click on the filter button and fill in the area name.

Alarm acknowledgement

The operator can acknowledge the alarms displayed in the alarms summary. This does not correct
the alarm triggering condition, but indicates that the operator is aware of it.

Alarm suppression

 122

You can suppress alarm monitoring for one or multiple alarms. This is useful for testing, repairing or
maintaining a piece of equipment. Click on the Suppress button to suppress alarm monitoring. To
view the list of the tags not being monitored, use the Suppressed list. You can also turn monitoring
back on from this list.

Sorting and filtering in run-time

By default, alarm information in the alarm summary is sorted firstly by date and time, severity and
then by area name.

This means that alarms are presented in a chronological order: if two or more alarms have the same
time and date, they are presented in order of severity; if any alarms have the same time and date
and the same severity, they are presented by the area name.

16.4 Alarm History

mySCADA engine automatically (if not disabled) logs your alarms into history. Every alarm action is
logged with all relevant data such as current time (with precision to 1 millisecond). You can browse
through the alarm history in the Alarm History window. Along with direct data browsing, you can
filter your data, based on the criteria and export the alarms history into a XLS file.

 123

Figure 6 Exported alarm history to XLS

 124

17. Data Logging

You can log and access a complete alarms history, all users actions, and any technological data you
wish to log. The historical data are grouped into logical sections called Data logs.

Data log has many options you can set up to tune your logging options. You can simply optimize
your data logs for speed and storage.

Data logs can be periodic or event driven. Using pre and post event buffers, you can save collection
of data before a specified event has happened.

17.1 Data Logs

You can log eventually any data or information
available in mySCADA. For user convenience and
easy access data are grouped into the Data logs.
You can think of a data log as a collection of
similar data. It can be for example a set of
temperatures read each second from the PLC,
motor start-up voltage and the current logged
each 100 milliseconds, running hours of
machinery, operator actions or computed
production statistics. You can also log any user-
defined variables from Server-side Scripts via a
virtual PLC.

Data logs: data sets grouped together. Each data
log has a set of parameters, such as log period, pre and post event buffers and so on. Data logs are
defined by the data you wish to read and log. Data is the collection of data points. Data points can
be variables read from the PLCs, user defined variables and computed statistics from Server-side
Scripts.

Data point: can be either a numerical value or a value array. Numerical value can be of any
numerical type such as Boolean, Integer, Float, Double, Signed or Unsigned. Numerical value is
always automatically converted and logged as a double value. This way you do not have to care
about the data type and its conversions. An array can represent a set of numerical values, buffer,
string or date. Representing of an array is user-defined, however, you can change its type any time
later - without data loss. You can freely combine numerical values and arrays in a single data log.
Therefore, you can have values, strings and dates logged together.

 125

There are two types of the Data logs:

Continuous Data Logs

They log periodically without interruption, this type of data log is useful mainly for persistent
processes.

Triggered Data Logs

Data logging, which is dependent on some event - condition. The condition is specified by the alarm
ID. This type of data log is useful for repetitive or random processes where you can specify the
triggering condition.

1) Go to the Data Logs section in the Project Window, right-click on the Data logs and select
Add New. A new dialog window will show up, fill in the data log name and click on OK.

2) Double-click on your newly created data log in the Data Logs folder. A new definition
window will show up. It is split into two horizontal sections: data log definition and data log
views.

17.2 Continuous Data Logging

The purpose of the continuous data log is to log data periodically without interruption. This type of
data log is useful mainly for persistent processes.

With the continuous data logging you define the read refresh rate in milliseconds - in this period all
data defined in a data log are read from PLCs and logged into the database. For any data point you
can define hysteresis of data logging. When hysteresis is enabled for a given data point it will be
read each cycle, defined by the read period - however it will be logged only if its value has changed
by more than of the defined hysteresis value. This can be especially useful for logging analog data
that does not change so often. When you set hysteresis of some data points in the data log, you can
specify the log rate – the period in which all data points of the data log will be logged, regardless
whether they have changed or not. By enabling hysteresis, you can dramatically decrease the
number of historical data logged while maintaining data precision and time continuity.

 126

17.3 Triggered Data Logs

The purpose of the triggered (event driven) data log is to log data depending on some event -
condition. This is useful for repetitive or random processes where you can specify the triggering
condition. You can, for example, log the production data only at the time when the production line
is running or log data upon the system failure and use the logged data for diagnostics. With event
driven data log you specify the start of the event by a condition. If the trigger condition is met, the
system starts recording the data.

Figure 7 Triggered data log definition

Pre trigger buffering: you specify the number of time samples to log before the trigger condition is
met. The system automatically keeps the number of defined time samples in the memory. If the
event occurs, the system will flush all the buffered data into the database and continue logging.

Post trigger buffering: the system will continue to log your data even after the trigger condition has
stopped. You should specify the number of the time samples to be logged after the trigger condition
has finished. The time sample duration is equal to the read period.

17.4 Tabular Views

Each data log can have defined multiple tabular views. You can define the tabular views in the same
window as you define the data log. Tabular views enable displaying all captured data from the data
log in the form of a table.

 127

In this example, there is one data log with temperatures and humidity being logged. You can see the
data are logged from two different PLCs (myPLC and S7).

There are defined two tabular views: Meteo and Motors. mySCADA automatically generates two
tables for the user, based on the tabular views definitions. This way the user can browse and save
the historical data or export them into a XLS file for further evaluation.

 128

18. Connections

To view existing connections select the Connections folder in the Project Window.

1) Create a new connection by clicking on the Add Connection button at the bottom of the
main window. A dialog window will open where you to enter specific connection parameters
in order to properly create a viable communication channel with the PLC.

 Type – select the type of PLC from the drop-down box at the top of the window

 Alias – enter the name of the connection

 IP – enter IP address of the PLC

 Slot – select proper slot specification

Note: The dialog content depends on the selected PLC type.

2) Once all the valid information is entered, click on OK at the bottom of the window.

If you want to delete some connections select them and click on the Delete Connection button right
next to the Add Connection button at the bottom of the main window.

To edit any of the existing connections, double-click on the specific value you wish to change (Type,
Alias, IP, Slot) and continue to make changes.

 129

 130

19. User Access Levels

Security is the major concern for every modern SCADA system. In mySCADA you can limit access
from the whole project viewing to a single element control. This way you can easily control user
access to your project and keep the security at the highest level. Also, if there is more than one
person using the technology you can utilize the user access function to set certain limitation.

19.1 Access Levels

Access Levels are security groups with chosen level of access. You can set different access levels for
different users. For example, maintenance personnel would have lower system access level than
administrators, but higher than operators. This way you can control who can access your system
and who can operate given technology. mySCADA has ten Access Levels numbered from “0” to “9”.
“0” (zero) is the lowest access available while “9” is the highest access level possible.

For better user orientation you can give specific names to these user access levels

19.2 Specify User Accounts

In order to use User Access Levels, you have to specify users for your project. You can create as
many users as you need. Each user must have specified an Access Group ranging from 0 to 9 - the
higher the number the higher access rights for the user.

 131

Limit access for whole project

View Access Group: Sets the minimal level of access for viewing.

Write Access Group: Sets the minimal level of access for writing to PLC.

Enable Remote Control: You can disable access from myPROJECT Designer by unselecting this
option. Once unselected, you will not be able to access mySCADA from myPROJECT Designer.
You can always re-enable this option from the mySCADA settings page.

Enable Settings: Gives users access to the setting page on Apple iOS devices.

Lock in Screens: Allows users to access certain views only.

Limit access for project screens

You can set the user access level for each view separately. Select a desired view in the Project
Window to display the view properties.

 132

Here you can set the access levels for the screen viewing and writing to the PLC separately:

In this example users with access the level 3 (or higher) can view the visualization screen, and users
with the access level 5 (or higher) can execute the Set commands defined in this view.

Limit access of arbitrary object in views

 133

You can set the user access rights even to a lower detail. The access rights can be set for each object
in a view, allowing creation of complex and customizable visualizations.

Select the target object and set the View and Write Access values:

Users

In this module you can define the users of mySCADA application.

After clicking on the Users folder a list of defined users will appear in the main window.

At the bottom you can find buttons for managing the user records.

Click on Add User and fill in the user name, password, E-mail or telephone number in the dialog
window. You can also select the access level group for accessing certain project elements. The
newly added users will be shown in the users list.

 134

20. Server-side Scripts

20.1 Introduction

Server-side scripting is an easy to use, yet extremely powerful option to extend the functionality of
your mySCADA system. Server-side scripting uses JavaScript as a primary language for writing
scripts, which is one of the most simple, straightforward, versatile and effective scripting languages.
It is relatively easy to learn as it uses syntaxes close to English. Also, you can find a lot of resources
and JavaScript libraries on the web - one of the main reasons why JavaScript has been chosen for
server-side scripting on mySCADA platform.

The execution of JavaScript is based on excellent V8 library from Google, which is now the fastest
JavaScript engine available. Rather than interpreting JavaScript, as the old engines used to do, V8
uses the Just-In-Time compiler to produce and execute native instructions, tailored to a processor
on which the application is running. The generated instructions are cached - avoiding the overhead
of repeated code generation - and deleted if no longer needed.

For networking and advanced functionalities mySCADA server-side scripts use the NODE.JS toolbox
for building fast and scalable network applications. NODE.JS uses an event-driven, non-blocking I/O
model that makes it lightweight and efficient, perfect for data-intensive real-time applications.

What can you achieve with mySCADA server-side scripting:

 process and analyze the PLC data

 compute statistical data

 create reports and serve them over a web server to a client

 implement complex alarming

 communicate with devices over Ethernet or Serial line

 implement own protocols for specialty devices

Look at the example below: HTTP server retrieves data from the PLC and sends them to a user who
opens the web page of mySCADA Box on the port 8000:

//we will implement our own web server

//which will accept connections on port 8000

var http = require('http');

http.createServer(function (req, res)

{

res.writeHead(200, {'Content-Type': 'text/plain'});

res.end(“Our first useful script.”);
}).listen(8000);

Take this function and put in the main script of your mySCADA system. Download the project into
your mySCADA device and open the web browser on: http://mySCADABoxIP:8000.

http://en.wikipedia.org/wiki/Just-in-time_compilation
http://myscadaboxip:8000/

 135

As you can see, you can simply extend your mySCADA system functionality. Now, you can for
example save PLC data every minute, compute statistics and use your web server for showing data
in PDF.

20.2 Server-side Scripts folder

The Server-side Scripts folder is located in the Project Window menu, as displayed in the picture
below. After opening this section the Scripts toolbar will appear.

20.3 Scripts Toolbar

Open Script – opens a current script in the script editor

Add Script – creates a new script

Import Script – imports a single file or folder into the current folder.

Duplicate Script – creates a copy of a current script

Delete Script – deletes a current script

Report Wizard – this feature helps you create a script report step-by-step

Open Table – opens a table

Add Table – creates a new table

Delete Table – deletes a current table

Export to Excel – exports data to XLS file

Import from Excel – imports data from XLS file

20.4 Server-side Scripts Folder Structure

Main – the main script executed only once, it cannot be deleted but can be left empty

Timed – contains timed scripts, executed periodically - the period settings can be executed by two
modes, Periodic and Defined. In the Periodic mode you specify the delay between executions, in the

 136

Defined mode you specify the times when the script should be executed. These options can be
selected by bookmarks in the Variables Window at the bottom of the main window - settings can be
done in four ways (Hourly, Daily, Weekly, and Monthly), also you can set the Watchdog, which
terminates the process if the run-time exceeds the user-specified time.

Quit – executed upon the system reboot or server-side scripts restart, so it can be used e.g. for
correct terminating of communication or reports generating

Includes – directly linked with NODE.JS, where you can store modules you want to use in scripting
and call them only by their name, i.e. without the path - like the NODE.JS built-in modules

UserFiles – used for the script files, it can be accessed from server-side scripts with a relative
address “./UserFiles”

Samples – examples of basic server-side scripting functions that can be used as a base for more
complex user scripts, if you want to use them create a copy into the Main script or the Includes
folder

20.5 Script Editor Functions

 137

Check syntax and Check syntax setting – as described previously (see the chapter Check Project)
this function checks if the script syntax is correct, if some errors found they will be listed in a small
window at the bottom of the main script window

Save – this button saves the current script

Undo and Redo – these buttons allow you to reverse or repeat the last editing actions

fx – this field shows a list of all used functions in the script

Find Next and Find Previous – use these buttons for searching certain words in the script

Replace – this function allows you to replace words, functions or symbols with different ones at
once (similar to the “Find and Replace” function in any other text editor)

20.6 Event-driven Asynchronous Callbacks

The NODE.JS approach is not unique, but the underlying execution model is different from other
runtime environments like Python, Ruby, PHP or Java.

Let us take a look at the following part of the code:

var result = database.query("SELECT * FROM hugetable");

console.log("Hello World");

The first line queries the database for lots of rows and the second line puts "Hello World" to the
console.

Let us assume that the database query is really slow, due to the number of rows and it takes too
long to execute.

With codes written this way the JavaScript interpreter of NODE.JS has to read a complete result set
from the database and then execute the console.log() function.

If this piece of code were written e.g. in PHP it would work the same way -> “read all the results at
once, then execute the next line of the code”. If this code were part of a web page script, the user
would have to wait several seconds for this page to load. However, in the PHP execution model, this
would not become a "global" problem, i.e. the web server starts its own PHP process for every HTTP
request it receives. If one of these requests results in a slow execution of the code it slows down the
page loading only for a particular user and does not affect other users.

 138

The execution model of NODE.JS is different - there is only one single process. If there is a slow
database query somewhere in the process, it affects the whole process - everything comes to a halt
until the slow query has finished.

To avoid this, JavaScript and therefore NODE.JS introduce a concept of event-driven, asynchronous
callbacks by utilizing an event loop.

We can understand this concept by analyzing the re-written version of the problematic code:

database.query("SELECT * FROM hugetable", function(rows)

{

 var result = rows;

});

console.log("Hello World");

Instead of expecting database.query() to return the result directly, we pass it the second parameter
- an anonymous function.

In the previous form the code was synchronous: “first do the database query, and only when this is
done write to the console”.

Now, NODE.JS can handle the database request asynchronously, provided that database.query() is
part of the asynchronous library. It takes the query and sends to the database, but instead of
waiting for it being finished it makes a ‘mental note’ saying "when at some point in the future the
database server is done and sends the result of the query, then I have to execute the anonymous
function passed to database.query()."

Then, NODE.JS immediately executes console.log() and enters the event loop. It continuously cycles
through this loop again and again, even though there is nothing else to do - events such as “slow
database query” finally deliver their results.

Note: This asynchronous, single threaded, event-driven execution model is not infinitely the only and
the best option - it is just one of several models with its limitations (one being that NODE.JS is just a
single process capable to run on one single CPU core). However, this model is quite approachable,
because it allows writing applications that must deal with completion in an efficient and relatively
straightforward manner.

You might want to take time to read Felix Geisendörfer's post on “Understanding NODE.JS” for
additional background explanation.

20.7 Organizing Applications into Modules

Example:

Let us have a look how to organize the application containing a code for a very basic HTTP server:

var http = require("http");

function onRequest(request, response){

 response.writeHead(200, {"Content-Type": "text/plain"});

 response.write("Hello World !!!");

http://debuggable.com/posts/understanding-node-js:4bd98440-45e4-4a9a-8ef7-0f7ecbdd56cb

 139

 response.end(); }

http.createServer(onRequest).listen(port, host);

Now, let us turn this code to a real NODE.JS module that can be used by the main script or the
timed scripts.

As you may have noticed the modules are used in the code as follows:

var http = require("http");

...

http.createServer(…);

In NODE.JS there is a module called "http", that can be used in the code by requiring it and assigning
the result of this requirement to a local variable. This turns the local variable into an object carrying
all the public methods that the “http” module provides.

It is a common practice to use the module name as the local variable name, however you may
choose whatever you like:

var foo = require("http");

...

foo.createServer(...);

Now, it should be clear how to use internal NODE.JS modules.

To create and use your own modules you do not have to change that much. Making some code a
module means that you need to export those parts of its functionality that you want to provide to
scripts requiring this module.

For now, the functionality the HTTP server needs to export is simple: scripts requiring the server
module simply need to start the server.

To make this possible, put your server code into a function named start() and export it:

var http = require("http");

function start() {

 function onRequest(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World !!!");

response.end();

}

http.createServer(onRequest).listen(8888);

}

exports.start = start;

Now, you just save this code into the Includes folder and name it “server.js”. You can start the HTTP
server from the main or timed scripts:

 140

var server = require("server");

server.start();

Note: You can use the server modules as internal modules - require their files and assign to variables
-> exported functions then become available.

20.8 Creating Reports

There are two ways of report creating in server-side scripts:

 Using the Report Wizard

 Manual report creating

Report Wizard

This feature helps you create a report in the scripts step-by-step which saves you plenty of
time spent if creating the reports manually.

1) Select the Server-Side Scripts folder in the Project Window and click on the Report Wizard
icon in the toolbar. The following window will appear:

2) In the tab Datalog select data-logs and tags to be included in the report table. You can also
activate data processing in the script - tick off the box Process Data in Script. If you wish to

 141

create a report without data-logs tick off the box Without Datalog, then click on the button
Next.

3) The following tab Chart allows you to include a time chart of data-logs in the report. You can
select data-logs and tags to be displayed. If you do not wish to include the charts in the
report tick off the box Without Chart. Click on the Next button.

4) In the tab Alarms you can select alarms to be included in the report, then click on the button
Next.

 142

5) In the Send tab you can select the way the report from your project will be sent. Fill in the
necessary information as shown on the picture below and click on Next.

6) In the last tab you will see the list of generated report template files. Now, you have to set
triggering actions for your report to be sent. Click on the button Copy Code to Clipboard to
use a generated report script for a later use and click on Close.

 143

Manual report creating

Report templates are created in MS Word (and other compatible text editors) with a simple syntax.
During report processing all defined variables inside a Word document are replaced with the script
data.

Example:

1) Prepare a report in MS Word (or any compatible text editor)

a) To replace a single variable put it in a single bracket: {variable}
b) To create a loop you can use loop opening {#} and loop closing {/} brackets

 144

c) Import the document into UserFiles in the Server-side Scripts folder:

2) Create a script to fill in the MS Word report with data:

Note: You can use the timed scripts for report generating in predefined intervals or certain dates.

 145

20.9 Scripting Functions

GENERAL FUNCTIONS

myscada.logFile(log);

This function prints the default log into the report, each log entry ends with a new line. You can
access the log file from the status on mySCADA Box or directly - mySCADA Desktop, it is useful for
debugging.

myscada.logFileClear();

This function clears the default log file (see the function logFile(log)).

myscada. getFilePathUserData(filename);

This function returns the full path with a specified filename to a default user folder for storing
generated data, which can be accessed by users. The user folder can be accessed by FTP or WWW
(if enabled in the section Server-side Scripts -> Accesses).

myscada.getFilename(filename);

This function is identical to getFilePathUserData(filename).

myscada. getFilePathUserFiles(filename);

This function returns the full path with a specified filename to a default UserFiles folder.

myscada. getFilePathUserIncludes(filename);

This function returns the full path with a specified filename to a default Includes folder.

myscada.requireIncludes();

This function provides a way to load modules from the Includes folder.

Example:

var module = myscada.requireIncludes('myModule.js');

module.myfunction();

myscada.deleteUserData();

 146

This function deletes all data from the user data folder.

myscada.usedSpaceUserDataFolder();

This function returns a used space in the user data folder in MB (available only on mySCADA Box).

myscada.freeSpaceUserDataFolder();

This function returns a free space to the user data folder in MB (available only on mySCADA Box).

myscada.getStringFromArray(values);

This function converts an array into a string and back, e.g. values from readTable().

Example:

myscada.readTable('myTable',function(status) {

 if (!status) {/* read error processing */}

 else {/* successful read processing */

 var values = myTable.myTag.values;

 var text = myscada.getStringFromArray(values);

 }

});

myscada.sendSMS(number,text);

This function sends a message SMS to a set phone number.

Example:

var telNumber = '123456789';

var smsText = 'SMS text from mySCADA';

myscada.sendSMS(telNumber,smsText);

myscada.sendMail(filename, filenamepath, mailsubject, mailtext, mailto, cc, host, secure, port,
user, pass, from);

This function sends an email to a defined email address.

Example:

 147

myscada.sendMail("Report.docx", myscada.getFilename("Report.docx"), "Report mail", "This is
mySCADA generated Report.", 'mailto@server.com', 'mailcc@server.com', 'smtp@server.com',
'None', 25, 'user', 'pass', 'from@server.com')

myscada.sendMailJson(filename, filenamepath, mailsubject, mailtext, config);

This function sends an email to a defined email address.

The parameters are the same as for the previous function with the config parameter, setting the
Json email structure.

Example:

var config = require(myscada.getFilePathUserFiles("smtp.json"));

myscada.sendMailJson("Report.docx", myscada.getFilename("Report.docx"), "Report mail", "This is
mySCADA generated Report.", config);

ONLINE DATA

myscada.readTable(table_name,callback)

This function reads a complete table (all variables from the table) with a table name provided as the
first function parameter, as it is defined in the PLC Variables Tables or the Script Variables Tables.
The Callback function will be supplied with the read status (1 – read successful, 0- read error). Upon
a successful reading, after the Callback function has finished, the value(s) of all variables will be
filled with the read data.

Note: The read data are available inside the Callback function also - for multiple tables call this
function multiple times with required parameters.

Example:

myscada.readTable('myTable',function(status) {

 if (!status)

 {/* read error processing */

 }

 else

 {/* successful read processing */

 var myReadValue=myTable.myTag.value;

 var myReadStatus=myTable.myTag.status;

 }

});

myscada.writeTag(tag_name,callback);

This function writes a single tag, already defined in one of the tables - PLC Variables Tables or Script
Variables Tables. The Callback function will be supplied with the write status (1 – write successful,
0- write error). If you do not need checking for writing errors you can pass null instead of the
Callback function.

 148

Example:

myscada.writeTag('myTable.myTag',function(status) {

 if (!status)

 {/* write error processing */}

 else

 {/* successful write processing if needed */ }

});

myscada.writeTable(table_name,callback);

This function writes all tags, defined in the PLC or Script Variables Table, which is supplied as the
first parameter. Only the tags with value(s) different from null will be written, the Callback function
will be supplied with the write status (1 – write successful, 0- write error).

Example:

myTable.myTag_1.value=100;

myTable.myTag_2.value=null;

/* only myTable.myTag_1 variable will be written as it’s not null

*/

myscada.writeTable('myTable',function(status) {

 if (!status)

 {/* write error processing */

 else

 {/* successful write processing if needed */ }

});

myscada.readActiveAlarms(severity,callback);

This function reads all currently active alarms. The first parameter filters out all active alarms with a
severity lower than the value of a supplied parameter. The Callback function will be supplied with
the read status (1 – read successful, 0 - read error) and the list of active alarms as a data object.

Example:

myscada.readActiveAlarms(0,function(status,data) {

 if (!status)

 {/* read error processing */}

 else {/* successful read processing */ }

});

The active alarms are saved in a data object structure you receive in the Callback function. The data
object is an array with the following object structure:

data[].

atm activation time [Date]

dtm deactivation time [Date]

acktm acknowledge time [Date]

 149

msg text description of alarm [String]

area area (geografical or logical) [String]

dev device [String]

stat alarm status [Integer]

(0 – non-active,1 – active, 2 – acknowledged ,8 – suppressed)

sv severity

val current value

acktval value when alarm become active

deactval value during deactivation

myscada.readAlarmsStatus(severity,callback);

This function returns a number of active and acknowledged alarms. The Callback function will be
supplied with the read status (1 = read successful, 0 = read error) and with a data object as the
second parameter.

Example:

myscada.readAlarmsStatus(0,function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */

 var number_of_active_alarms=data.active;

 var number_of_acknowledged_alarms=data.ack; }

});

The data object has the following structure:

data

.active number of active alarms [Integer]

.ack number of acknowledged alarms [Integer]

HISTORICAL DATA

myscada.histoDlg('dlg_name',start,end,limit,callback);

This function returns historical data from a given data-log. In the parameter dlg_name you specify
the data-log name, the parameter start is the starting date, specified as a number of seconds since
1970/01/01, the parameter end is the ending date, again specified as a number of seconds since

 150

1970/01/01. ThelLimit parameter is the maximal number of records returned. You should also
specify the callback function to execute when the file is saved.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlg("default",start,end,10,function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */ }

});

The returned object data is an array where each element has the following structure:

data[].

tm time [Date]

1 first column [Double]

2 second column [Double]

… … …

n last column [Double]

myscada.histoDlgCSV('filename','dlg_name','format',start,end,limit,callback)

This function reads historical data from a given data-log and saves to a newly created file, specified
in the first parameter, filename - if the file already exists it will be overwritten (the saved data
format is CSV). In the parameter dlg_name you specify the data-log name. The format parameter is
used for setting of the date format (see Formatting Dates section in this manual). The start
parameter is the starting date, specified as a number of seconds since 1970/01/01. The end
parameter is the ending date, also specified as a number of seconds since 1970/01/01. The tags
parameter stands for the number of columns you want to read. The limit parameter is the maximal
number of records returned. You can also specify the callback function to execute when the file is
saved.

Note: If you specify only the file name it will be automatically saved into the user folder, which you
can access by FTP or WWW (if enabled in the section Server-side Scripts → Accesses). If you like to
use a different location, specify the complete path to the file.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

 151

myscada.histoDlgCSV(myscada. getFilename('example.csv'),'default',
'MMMM Do YYYY, h:mm:ss a',start,end,3,function(status) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */ }

});

Output file “example.csv” :

timestamp;v1;v2;v3;v4;v5

January 26th 2014, 8:37:15 pm;31.9244;33.0909;33.4595;34.1234;30.2989

January 26th 2014, 8:37:10 pm;34.4499;31.0198;33.9934;33.3424;33.5842

January 26th 2014, 8:37:00 pm;30.9228;31.3836;31.4809;30.5054;33.3162

myscada.histoDlgAppendCSV('filename','dlg_name','format',start,end,limit,callback)

This function is identical to histoDlgCSV(), but instead of creating a new file, it appends data into an
already existing file. If the file does not exist it will be created. If the file already exists it will append
the data to the file end.

myscada.histoDlgTags(dlg_name,start,end,”tags1,tags2”,limit,callback);

This function returns historical data from a given data-log. In the parameter dlg_name you specify
the data-log name, the start parameter is the starting date, specified as a number of seconds since
1970/01/01. The end parameter is the ending date, also specified as a number of seconds since
1970/01/01. The tags parameter stands for the number of columns you want to read. The limit
parameter is the maximal number of records. The limit parameter is the maximal number of records
returned. You should also specify the callback function to execute when the file is saved.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlg("default",start,end,”1,2”,10,function(status,data)

{

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */ }

});

The returned object data is an array and every object in this array has the following structure:

data[].

 152

tm time [Date]

1 first column [Double]

2 second column [Double]

… … …

n last column [Double]

myscada.histoDlgTagsCSV(filename,dlg_name,format,start,end,tags,limit);

This function reads historical data from a given data-log and saves to a newly created file, specified
in the first parameter, filename - if the file already exists it will be overwritten (the saved data
format is CSV). In the second parameter, dlg_name you specify the data-log name. The format
parameter is used for setting of the date format (see Formatting Dates section in this manual). The
start parameter is the starting date, specified as a number of seconds since 1970/01/01. The end
parameter is the ending date, also specified as a number of seconds since 1970/01/01. The tags
parameter stands for the number of columns you want to read. The limit parameter is the maximal
number of records returned. You can also specify the callback function to execute when the file is
saved.

Note: If you specify only the file name it will be automatically saved into the user folder, which you
can access by FTP or WWW (if enabled in the section Server-side Scripts → Accesses). If you like to
use a different location, please specify the complete path to the file.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlgTagsCSV(myscada. getFilename('example.csv'),
'default','MMMM Do YYYY, h:mm:ss a',start,end,”1,2”,3,

function(status) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */ }

});

Output file “example.csv” :

timestamp;v1;v2

January 26th 2014, 8:37:15 pm;31.9244;33.0909

January 26th 2014, 8:37:10 pm;34.4499;31.0198

January 26th 2014, 8:37:00 pm;30.9228;31.3836

 153

myscada.histoDlgTagsAppendCSV(filename,dlg_name,format,start,end,tags,limit);

This function is identical to histoDlgTagsCSV, but instead of creating new file, it appends data to an
already existing file. If the file does not exist it will be created, if the file exists it will append the
data to the file end.

myscada.histoAlarms(start,end,limit,callback);

This function returns history of alarms in a defined time interval. The parameter start is the starting
date, specified as a number of seconds since 1970/01/01, the parameter end is the ending date
again specified as a number of seconds since 1970/01/01. The limit parameter is the maximal
number of records returned. You should also specify the callback function to execute when the file
is saved.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoAlarms(start,end,10,function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */ }

});

History of alarms is saved in the data object structure you will receive in the Callback function. The
data object is an array where each object has the following structure:

data[].

atm activation time [Date]

dtm deactivation time [Date]

acktm acknowledge time [Date]

msg text description of alarm [String]

area area (geografical or logical) [String]

dev device [String]

stat alarm status [Integer]

(0 – non-active,1 – active, 2 – acknowledged ,8 – suppressed)

sv severity

actval activation value

 154

ackval value when alarm become active

deactval value during deactivation

user user which has confirmed alarm

myscada.histoAlarmsCSV('filename',format,start,end,limit,callback);

This function returns history of alarms in a defined time interval and save them to a newly created
file, specified in the first parameter, filename. If the file already exists it will be overwritten (the
saved data format is CSV). The format parameter sets the date format (see Formatting Dates
section in this manual). The start parameter is the starting date, specified as a number of seconds
since 1970/01/01. The end parameter is the ending date, also specified as a number of seconds
since 1970/01/01. The limit parameter is the maximal number of records returned. You can also
specify the callback function to execute when the file is saved.

Note: If you specify only the file name it will be automatically saved into the user folder, which you
can access by FTP or WWW (if enabled in the section Server-side Scripts → Accesses). If you like to
use a different location, specify the complete path to the file.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoAlarmsCSV(myscada. getFilename('alarms.csv'),'MMMM Do
YYYY, h:mm:ss a',start,end,2,function(status) {

 if (!status)

 {/* read error processing */}

 else { /* successful read processing */ }

});

Output file “alarms.csv” :

atm;dtm;acktm;id;msg;area;dev;stat;sv;atm;dtm;acktm;av;dv;ackv;f;user

January 26th 2014, 8:36:15 pm;January 26th 2014, 8:37:15 pm; ;1;var1;area0; ;0;0;5;1;0;#.#;system

January 25th 2014, 1:00:15 pm;January 25th 2014, 1:30:00 pm; ;2;var2;area0; ;0;0;2;1;0;#.#;system

myscada.histoAlarmsAppendCSV('filename',format,start,end,limit,callback);

This function is identical to histoAlarmsCSV(), but instead of creating a new file, it appends data to
an already existing file. If the file does not exist it will be created, if the file exists it will append the
data to the file end.

REPORTING FUNCTIONS

myscada.readActiveAlarmsForReports(severity,format,callback);

 155

This function reads all currently active alarms and a format for a direct use in the MS Word
Template Report. The first parameter filters out all active alarms with a severity lower than a value
of a supplied parameter. The second parameter is used for adjusting the date format (see the
Formatting Dates section in this manual). The callback function will be supplied with the read status
(1 – read successful, 0 - read error) and the list of active alarms as a data object.

The active alarms are saved in the data object structure you will receive in the Callback function.
The data object is an array with the following object structure:

data[].

atm activation time [Date formatted as string]

dtm deactivation time [Date formatted as string]

acktm acknowledge time [Date formatted as string]

msg text description of alarm [String]

area area (geographical or logical) [String]

dev device [String]

stat alarm status [Integer]

(0 – non-active,1 – active, 2 – acknowledged ,8 – suppressed)

sv severity

val current value

acktval value when alarm become active

deactval value during deactivation

Note: Save your DOCX document into UserFiles, inside the Server-side Scripts folder (use Import
from the context menu)

Example:

myscada.readActiveAlarmsForReports(0,function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */

 //create replacement variable

 var repl=new Object();

 repl.alarm=data;

 //create DOCX object

 var mydoc = require('docxgen');

//load MS Word Report Template

mydoc.LoadTemplate('./UserFiles/template.docx');

//process alarms – save them into a table inside template

mydoc.LoadReplacement(repl);

//save report into file

mydoc.GenOutput(getFilename('DEMO_REPORT.docx'));

}

 156

});

MS Word template.docx should contain a table defined like this:

myscada.histoDlgForReport('dlg_name',start,end,limit,format,callback);

This function returns historical data from a given data-log and a format for a direct use in the MS
Word Template Report. In the first parameter dlg_name you specify the data-log name, the
parameter start is the starting date, specified as a number of seconds since 1970/01/01, the
parameter end is the ending date, again specified as a number of seconds since 1970/01/01. The
limit parameter is the maximal number of records returned. The format parameter sets the date
format (see Formatting Dates section in this manual). You should also specify the callback function
to execute when the file is saved. The returned values are formatted accordingly to the set format,
specified in the data-log definition.

The returned object data is an array where each element has the following structure:

data[].

tm time [Date formatted as string]

1 first column [Double]

2 second column [Double]

… … …

n last column [Double]

Note: Save your DOCX document into UserFiles inside Server-side Scripts (use import context menu)

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlgForReport('default',start,end,10,'MMMM Do YYYY,

h:mm:ss a',function(status,data) {

 if (!status)

 {/* read error processing */}

 else { /* successful read processing */

 //create replacement variable

 var repl=new Object();

 repl.dlg=data;

 //create DOCX object

 var mydoc = require('docxgen');

Time Message Value

{#alarm} {atm} {msg} {value}{/alarm}

 157

//load MS Word Report Template

mydoc.LoadTemplate('./UserFiles/template.docx');

//process datalogs – save them into a table inside template

mydoc.LoadReplacement(repl);

//save report into file

mydoc.GenOutput(getFilename('DEMO_REPORT.docx'));

}

});

MS Word template.docx should contain a table defined like this:

Time First Second

{#dlg} {tm} {1} {2}{/dlg}

myscada.histoDlgForReportWithTags('dlg_name',start,end,['1','2','3',...],limit,format,callback);

This function is identical to histoDlgForReport(), but adds a new array parameter ['1','2','3',...] for
specifying the tags to be read. In the data-log definition each row (tag) has its unique identification
number - use this number to select a given tag.

myscada.histoDlgForReportNoRounding('dlg_name',start,end,limit,format,callback);

This function is identical to histoDlgForReport(), but does not format data (speficied by format in the
data-log definition).

myscada.histoDlgForReportRounded('dlg_name',start,end,limit,format,decimalplaces,callback);

This function is identical to histoDlgForReport(), but adds the parameter decimalplaces, which
specifies a number of decimal places of returned data values.

myscada.histoAlarmsForReport(start,end,limit,format,callback);

This function returns history of alarms in a defined time interval and format for a direct use in MS
Word Template Report. The first parameter start is the starting date, specified as a number of
seconds since 1970/01/01, the second parameter end is the ending date, again specified as seconds
since 1970/01/01. The limit parameter is the maximal number of records returned. The fourth
parameter is used for adjusting the date format (see the Formatting Dates section in this manual).
You should also specify the callback function to execute when the data file is ready.

History of alarms is saved in the data object structure you will receive in the Callback function. The
data object is an array where each object has the following structure:

data[].

 158

atm activation time [Date]

dtm deactivation time [Date]

acktm acknowledge time [Date]

msg text description of alarm [String]

area area (geografical or logical) [String]

dev device [String]

stat alarm status [Integer]

(0 – non-active,1 – active, 2 – acknowledged ,8 – suppressed)

sv severity

actval activation value

ackval value when alarm become active

deactval value during deactivation

user user which has confirmed alarm

Note: Save your DOCX document into UserFiles inside Server-side Scripts (use import context menu)

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoAlarmsForReport(start,end,10, 'MMMM Do YYYY, h:mm:ss

a',function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */

 //create replacement variable

 var repl=new Object();

 repl.histalarm=data;

 //create DOCX object

 var mydoc = require('docxgen');

//load MS Word Report Template

mydoc.LoadTemplate('./UserFiles/template.docx');

//process history of alarms – save them into a table inside

template

mydoc.LoadReplacement(repl);

//save report into file

mydoc.GenOutput(getFilename('DEMO_REPORT.docx'));

}

});

 159

The MS Word template.docx should contain a table, defined as follows:

Time Message Value

{#histalarm} {atm} {msg} {value}{/histalarm}

myscada.histoDlgCreatePicture('dlg_name',start,end,filename,limit,w,h,format,callback)

This function creates a time chart (graph) from the historical data saved in a data-log, named
‘dlg_name’ and saves it as a picture with a type specified by the format parameter. The second
parameter start is the starting date, specified as a number of seconds since 1970/01/01, the third
parameter end is the ending date, again specified as seconds since 1970/01/01. The filename
parameter is the file path (including the file name) for saving the picture to. The limit parameter is
the maximal number of records to use for the picture rendering. The w and h parameters are the
width and height of the picture. The format is a file type generated, you can use the following
formats: jpeg,svg,pdf, png and emf. If you want to use the generated picture in the report, use the
format emf.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlgCreatePicture(‘default’start,end,myscada.getFilenam

e('picture.emf'),10,640,480,'emf',function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */

}

});

myscada.histoDlgCreatePictureForPens('dlg_name',start,end,filename,keys,limit,w,h,format,callb
ack)

This function is identical to histoDlgCreatePicture(), but adds the parameter keys, where you can
specify what pens to include in the chart. The keys parameter is defined as an array, where the
values specify the tags to be read. In data-log definition each row (tag) has its unique identification
number, use this number to select a given tag.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlgCreatePictureForPens(‘default’start,end,myscada.get

Filename('picture.emf'),['1','2'],10,640,480,'emf',function(status,

data) {

 if (!status)

 160

 {/* read error processing */}

 else

 { /* successful read processing */

}

});

myscada.histoDlgCreatePictureForPensWithNames(datalogname,start,end,filename,names,keys,l
imit,w,h,format,callback)

This function is identical to histoDlgCreatePictureForPens(), but adds an array parameter names,
where you can specify names of the pens shown in the legend.

Example:

//get current date in seconds

var end = Math.round(+new Date()/1000);

//compute start as now – 1 minute (e.g. 60 seconds)

var start = end-60;

myscada.histoDlgCreatePictureForPensWithNames(‘default’start,end,my

scada.getFilename('picture.emf'),[‘name1’,’name2’],['1','2'],10,640

,480,'emf',function(status,data) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */

}

});

myscada.createReport(reportTemplate,callback)

This function creates an object for report generating. Specify the file path to the report template.

Example:

myscada.createReport(myscada.getFilePathUserFiles('reportTemplate.do
cx'),function(status,doc) {

 if (!status)

 {/* read error processing */}

 else

 { /* successful read processing */

}

});

myscada.createReportSync(reportTemplate)

This function creates an object for report generating. Specify the file path to the report template.
This function does not use a callback!

Example:

var doc =

myscada.createReport(myscada.getFilePathUserFiles('reportTemplate.do
cx'));

 161

myscada.generateReport(doc,reportname)

This function creates reports (use the function createReport to get a report first and then fill it with
data). Input parameters: report object created by function createReport and the file where to save
the generated report.

Example:

var doc =

myscada.createReport(myscada.getFilePathUserFiles('reportTemplate.do
cx'));

doc.setData({

 "aktdate":aktdate,

 "timeFrom":timeFrom,

 "timeTo":timeTo

 });

myscada.generateReport(doc,myscada.getFilename("Report.docx"));

FORMATTING DATES

Every function converting data from Date to String requires you to provide the format. Generally, all
functions saving data to a CSV file, and all the reporting functions require you to provide the format
parameter. The format takes a string of tokens and replaces them with their corresponding values.

Example:

'MMMM Do YYYY, h:mm:ss a' January 26th 2014, 11:35:33 pm

'dddd' Monday

'MMM Do YY' Jan 26th 14

For the format parameter provide a string with specified format, the following tokens are valid:

Token Output

Month M 1 2 ... 11 12

Mo 1st 2nd ... 11th 12th

MM 01 02 ... 11 12

MMM Jan Feb ... Nov Dec

MMMM January February ... November December

Quarter Q 1 2 3 4

Day of Month D 1 2 ... 30 31

Do 1st 2nd ... 30th 31st

 162

DD 01 02 ... 30 31

Day of Year DDD 1 2 ... 364 365

DDDo 1st 2nd ... 364th 365th

DDDD 001 002 ... 364 365

Day of Week d 0 1 ... 5 6

do 0th 1st ... 5th 6th

dd Su Mo ... Fr Sa

ddd Sun Mon ... Fri Sat

dddd Sunday Monday ... Friday Saturday

Day of Week (Locale) e 0 1 ... 5 6

Day of Week (ISO) E 1 2 ... 6 7

Week of Year w 1 2 ... 52 53

wo 1st 2nd ... 52nd 53rd

ww 01 02 ... 52 53

Week of Year (ISO) W 1 2 ... 52 53

Wo 1st 2nd ... 52nd 53rd

WW 01 02 ... 52 53

Year YY 70 71 ... 29 30

YYYY 1970 1971 ... 2029 2030

Week Year gg 70 71 ... 29 30

gggg 1970 1971 ... 2029 2030

Week Year (ISO) GG 70 71 ... 29 30

GGGG 1970 1971 ... 2029 2030

AM/PM A AM PM

a am pm

Hour H 0 1 ... 22 23

HH 00 01 ... 22 23

h 1 2 ... 11 12

 163

hh 01 02 ... 11 12

Minute m 0 1 ... 58 59

mm 00 01 ... 58 59

Second s 0 1 ... 58 59

ss 00 01 ... 58 59

Fractional Second S 0 1 ... 8 9

SS 0 1 ... 98 99

SSS 0 1 ... 998 999

Timezone z or zz EST CST ... MST PST

Z -07:00 -06:00 ... +06:00 +07:00

ZZ -0700 -0600 ... +0600 +0700

Unix Timestamp X 1360013296

Given that a preferred formatting differs, there are a few tokens that can be used for the time
formatting, based on its language. There are uppercase and lowercase variations for the same
formats. The lowercase version is intended to be a shortened version of its uppercase counterpart.

Time LT 8:30 PM

Month numeral,

day of month, year
L 09/04/1986

l 9/4/1986

Month name, day of month, year LL September 4 1986

ll Sep 4 1986

Month name, day of month, year, time LLL September 4 1986 8:30 PM

lll Sep 4 1986 8:30 PM

Month name, day of month,

 day of week, year, time
LLLL Thursday, September 4 1986 8:30 PM

llll Thu, Sep 4 1986 8:30 PM

Example:

 164

In this example, the task is to read and write data to the PLC with a 1-minute interval:

1) Create a PLC variable table and give it a name.

2) Fill in the tags you want to read from the PLC, alias is the variable name under which you will
access your defined tag in the scripts.

3) Create a timed script and set the refresh period to 1 minute.

4) Fill in the code into the code window.

Code description:

 165

5) Now you are done. Download the project to your mySCADA device and you will see that
every minute the tags defined in the myPLCTable will be read and written, based on your
formula evaluation.

20.10 Debugging

With this feature you can manually debug your written scripts. Debugging uses Node Inspector.

Debugger integrated in myPROJECT Designer is a powerful JavaScript debugger interface. Node
Inspector supports almost all of the debugging features of DevTools, including:

 Navigate in your source files

 Set breakpoints (and specify trigger conditions)

 Step over, step in, step out, resume (continue)

 Inspect scopes, variables, object properties

 Hover your mouse over an expression in your source to display its value in a tooltip

 Edit variables and object properties

 Continue to location

 Break on exceptions

 Disable/enable all breakpoints

Before you start debugging:

 Make sure you have same project downloaded to your device as you have in myPROJECT
Designer

 Select correct device in bottom of the script editor

1) To start debugging click on the Debug icon in right bottom corner of the Script window.

 166

TIP: if your script generates some files, you will find them in the path specified in UserData
dir

2) In the following window select whether you want edit the current script or all the project
scripts.

Note:

When downloading a project into the device
all the scripts merge into one.

Debug Editing Script: this option will run
only the current script you are editing other
scripts will not be executed.

Debug Complete Scripts: this option will run
complete solution, eg. It will run all your

scripts exactly same way as they will run on your device when you download a project to it.

TIP: If you have some dependency among your scripts (eg. Variable declarations in main
script etc.) always use Debug Complete Scripts.

3) After a short initialization start the debugger by clicking on the button OPEN Browser.
Alternatively, you can open Chrome browser and paste the link copied to the clipboard.

 167

The debugging console will open in the Chrome browser (you need to have it installed and
set as default browser to be able to run the debugger).

In the debugging console you can:

 browse through the script row by row or set the break points to which it will be checked
automatically

 enter into caller functions to debug called functions

 view the local and global variables on the right side of the console window etc.

4) When you finish debugging go back to myPROJECT Designer and click on the button STOP

Debugging and close the Chrome browser window.

 168

Console log

For debugging of server-side scripts on mySCADA Compact devices, you can use the Console log,
accessible via a web interface of mySCADA Box in the menu SYSTEM, and the bookmark STATUS.

The console is accessible through any mySCADA runtime with a telnet connection on the port
11015. The windows users can use a freeware utility Putty (see picture below) and the UNIX users
(including MAC) can use a telnet command with a specific port.

Also a useful tool for debugging of server-side scripts is to define a function for logging of uncaught
exceptions:

process.on('uncaughtException', function (err) {

console.log(err);

});

This function will log a description of an uncaught error into the console, you can, of course define
any action inside this function.

20.11 Script Status

Scripts status and web log

In the menu SYSTEM and the bookmark STATUS you can find the scripts status, which can be useful
for the scripts troubleshooting - an example output is shown in the picture below:

 169

In the Status column you can see the web log and restart of all server-side scripts. You can use this
log from your scripts with the function myscada.logFile ("your text"); which will add a time stamp to
your text. This function is embedded in NODE.JS so you can call it without requiring.

In the next parts there are reports on the Main script and on Timed scripts. There are three
parameters in this report:

 Last start – the last time when the script started

 Executed in – run time of the script

Status – status of the script execution, if execution fails the error log is displayed (as shown
in the previous picture for the script TS2)

Global variables

For interconnecting server-side scripts you can use global variables. To define a global variable use
“globVar = 5;” instead of “var globVar = 5;” in the Main script so it will be accessible from all the
other scripts.

Virtual PLC

This is a powerful utility to bind outputs of user scripts with mySCADA HMI, alarms or live data. First
step to start using a virtual PLC is to create a virtual tag – it can be created the same way as real PLC
tags – the only difference is that you select the script as a source, instead.

Note: When there is no real PLC added a virtual PLC (script) is the only option.

 170

20.12 Ser2Net

Ser2Net is a very useful service, which allows using serial ports of mySCADA Box in Server-side
Scripts. At first it is necessary to setup the parameters of serial ports in the COM bookmark of the
mySCADA Box menu. A number of available serial ports depends on the hardware configuration of
mySCADA Box. Clicking on the “edit” icons on the right can change the settings of each port.

After configuring the desired serial ports you can switch to the SER2NET bookmark and configure
thr Ser2Net service. Thr Ser2Net configuration window is shown in the picture below:

By default the Ser2Net service is stopped and the service auto-start is disabled. To enable auto-start
of Ser2Net you have to tick off the Start after reboot box and click on the Change button to save the
settings. The Start and the Stop buttons can control the Ser2Net service manually. To enable access
to the serial port via Ser2Net you have to set up a new device by clicking on New device. The Add
device dialog is shown on the following picture.

 171

Device – list of available serial ports

Timeout – time (in seconds) before the port will be disconnected if there is no activity on it. A
zero value disables this function

Allow remote control – allows remote control of the serial port parameters via RFC 2217

TCP Port – number of the TCP/IP port to accept connections

State – specifies operation mode of device:

 Raw – enables the port and transfers all data as it is between the TCP and the serial port

 Telnet – enables the port and runs the telnet protocol on the port to set up telnet
parameters

 Off – disables the port from accepting connections

20.13 Script Samples

myPROJECT Designer contains many useful examples to help you get started with Server-side
Scripts. You can find these examples in the section Examples.

 172

21. Creating and Testing Components

With myPROJECT Designer you can create rich feature components, suitable for creation of
animated repeatable objects like buttons, gauges, charts etc. The main idea is that you create a
group of animated objects, where the animations are tied to some variables names instead of a
direct tag address. After adding such component into a view you simply enter the target tag address
in one place (component properties) as a variable value and this change will apply to all tied
animations without an actual need to set the tag address for each object separately.

21.1 Creating Components

New components can be added to existing groups or created as
a part of the new components group.

1) Select the User Components in the Project window and
click on the icon Add Component Directory in the main
toolbar.

2) A new dialog opens where you can enter the name for
the new directory and click on the button Add. Clicking

on the icon and select the source folder to import
the components from.

3) Select the group, where the new component should be
placed and click on the Add Component icon in the main
toolbar.

4) A new dialog will be shown, where you can fill in the component name, specify the width
and height of the drawing area.

 173

5) Click on Add to create the component.

Now when a new component is created double-click on its name, which will prompt the graphic
editor.

Let us start with a simple rectangle, animated by rotation:

Create a rectangle and set the Rotate animation on it in the Properties window, where you input the
Tag (Address), set the Minimum and Maximum expected tag values and the rotation axis if needed.

 174

Now take a look at the Component Variables window.

21.2 Component Variables

In this section you define all local variables (visible only inside of the component) by specifying a
name, short description and type for each variable. These variables can contain tag values read
from the PLC, color and fill values for different elements, calculation results etc.

 175

Each component can have as many local variables as you need. You have to save your progress after
addition of each new variable by clicking on Save in the tab toolbar. The Color button opens the
color palette when an appropriate type of variable is selected.

Each local variable has following properties:

Property Description

Variable Name of the variable as internal value. It is used for a reference in animations
and properties of your component. Create variable named “Tag” to continue in
this example

Name Name of the variable seen by the user, this will be shown in the component
properties later, name the variable as “Tag2”

Desc Description of the variable

Value Variable default value, for this example purposes set as “N100:0”

Type Type of variable, supported types are: Tag, String, Int, Double (Float), Color,
Boolean, Object

You can refer to the local variable anywhere in the animations, effects or properties across the
edited component.

Click on Save to confirm variable changes and then save the whole component.

Return back to the view and test the new component.

 176

Now open the Components library in the Properties window and select your created component.
Drag the component to the opened view and click on it component to see its properties.

 177

In the Properties window you can see the parameters of the component - the name of the
component variable “Tag2”, which has a default value of “N100:0”. To override the default tag
address enter any other tag you want to connect your component with, for example “F30:10”.

To make a quick check if the tag address in the animation has been changed right-click on the
component and click on Enter group.

Select the rectangle again, open its properties in the Properties window and set the Rotate
animation.

 178

You should see the tag address used for this animation has changed to the requested “F30:10”.

21.3 Replacements

This feature should ease replacing of a predefined text in a component. You can change the text,
font size, color, stroke or opacity of the text element.

1) Start with the component variables again and create the following variables:

 Variable Text with type String

 Variable Font Size with type Int

 Fill with type Color

 Stroke with type Color

 Opacity Formula with type Int or Double

 Opacity min/max with type Int or Double

 179

The Opacity here is similar to Opacity animation, which means that the text will be visible if
the value of Opacity formula will be within Opacity min/max range.

2) Now create a text element:

3) Fill in the Replacement -> Text in the Properties window.

 180

4) Input the Component Variable that you want to use for the text -“Text” in this case and fill
the FontSize and other parameters alike.

Note: The variable names are upper case sensitive.

5) When you fill all properties save your component.

6) Text will change according to the value of an attached component variable. After saving the
component, open the Library and import it.

 181

 Open the User Components library in the Properties window and select the created
component. Drag the component into an opened view and click on it to see its properties.

 Now, navigate to the Component section, where you can change the value for all component
variables.

Replacements are important for complex components, where you can replace the component text
(button text, for example) by just one click.

Example:

In the following example we create a simple slide bar showing the variable progress and its Min and
Max values.

1) Create a new component and draw a rectangle as seen in the picture below.

2) Right-click on the rectangle and select Rotate -> by 90 degrees angle from the menu.

 182

3) Copy the selected rectangle and apply Paste on same location on it.

Set the Fill property to “none” then put the element to the background with the function

Lower to the background.

4) We have now created a frame of the scale.

5) Now create 3 text fields and add the animations:

For the animation of the slide bar we will our rectangle. Fill the Component Variables as
shown in the picture below:

 183

As you can see we have created three local variables, for the tag value you have used a
variable tag, for specifying the minimum and maximum values you have used the min and
max variables.

Note: Keep saving your project during such a complex creation with the button Save.

To make indicator out of the rectangle by resizing it, according to the value read from the PLC, set
the Scale animation as shown in the following picture:

We also want to show the actual value in the middle of the slide bar. Click on the text field in the
middle of the rectangle, select the Anim tab in the Properties window and click on the Tag (Address)
field in the Get Animation section. Then fill in the Tag field with “Tag”, which corresponds to our
local variable name.

 184

As you can see we have used one of our local variables, you can use the same variable (especially
the tag type) for multiple animations/effects to achieve better effect.

We will also show the Min and Max limits of our tag. Click on the right text field, then select the
Rep. tab from the Properties window and set “Max“ for Text in the Replacements.

7) Now do the same for the other text field but place the Min variable there.

Let us finish the component by drawing a simple rectangle around the slider as a background
(Transforms –> Order –> Lower to background) to create a boundary of the component.

The final component should as follows:

8) Save the component and test its functionality.

 185

21.4 Testing Component

Create a new view and open it, then navigate to the Library. Select your component and drag it to
the canvas.

Now click on the component and look into the Properties window:

In the Component section you can see all local variables you have defined with variables of the tag
type displayed in bold letters.

Set the Tag (address), the Minimum and Maximum values:

Now save the view and send to a supported device, the screen should look as follows:

 186

21.5 Entering Advanced Functions (Equations)

To create complex and feature rich components you need to enter complex formulas instead of
simple variables. You can use functions anywhere you like: inside animations, instead of constants
or as a text replacement of the text fields.

To show the functionality we will extend our example by implementing the scale along the slide bar
we have just created.

1) Open the slide bar created in the previous chapter and adjust as follows:

2) Delete the Min and Max fields and stretch the blue rectangle, including the frame. After
that, insert additional lines with the Drawing-Line tool to divide the rectangle into thirds.
With Transforms -> Order -> Lower to background send both lines and frame into the
background

3) Now insert additional text fields.

For each text field we need to specify the Text in the Replacement in the Rep. tab:

 Left text field: (min).toFixed(1)

 Second text field (from left): ((min+max)/3+min).toFixed(1)

 Second text field (from right): (2*(min+max)/3+min).toFixed(1)

 Right text field: (max).toFixed(1)

 187

The left text field will show the value of the variable min.toFixed(x), which is a function that rounds
the result to x decimal places. In our case, the value will be formatted to show one decimal place.

The text field second from left should show 1/3 of the scale, therefore we have used the formula
min+(min+max)/3 to get 1/3 of the scale. We will use the toFixed(1) function to round the result.

The other two text fields are similar to those two, add units and a label to our component to finish:

To use the Label and Units text fields we need to create two new variables. Both will be of the type
string. The first variable will be named label and the second will be named unit. For the text field
label add Text Replacement equal to variable label. For Units text field add Text Replacement equal
to variable units. Finally, click on the Save button to see the changes.

The visualization running on iPad:

 188

 189

22. Devices

This module allows a quick overview of all available mySCADA device connections - manually added
and connected to the local network.

The main window of the Devices window is split into two parts:

 Upper part displays all permanently defined devices

 Lower part displays the list all compatible devices in the local network (iOS or Android
devices with the mySCADA app running in the foreground, mySCADA boxes and mySCADA
Desktop and Server)

You can easily store online devices the defined by selecting them from the Online Devices list and
clicking on the Add from OnLine icon.

1) Click on the Add Device button to add a device manually and fill in the dialog window:

 190

2) Select the device type first:

 iPad

 iPhone

 iPod touch

 mySCADA Box

 myLOGGER

 Desktop

 Server

3) Set the device parameters:

 Alias – name describing the device

 IP – fill in the IP address of the devices

 Ser. No.: – serial number of the device (mySCADA box/myLOGGER only). You can find
serial number in System-Status menu of the device.

 191

23. Communications

The user is not forced to enter the data type during the screen drawing. The proper data type is
fetched during the data reading from the PLC. There are some limitations and only some data types
are supported. The following paragraph specifies all supported data types for each PLC type. Each
supported PLC protocol is described in the subchapter below.

23.1 EtherNet/IP (ControLogix)

This EtherNet/IP enabled PLC brand supports all numeric data types:

Tag Data Type Description

DINT An atomic data type consisting of a DWORD used for storing a 32-
bit signed integer value (-2,147,483,648 to +2,147,483,647).

SINT An atomic data type that stores an 8-bit signed integer value (-
128 to +127).

INT An atomic data type consisting of a word used for storing a 16-bit
signed integer value (-32,768 to +32,767).

REAL An atomic data type that stores a 32-bit IEEE floating point value.

BOOL The BOOL data type is an atomic data type consisting of a single
bit.

The access to user defined data types like structures or arrays are supported. To read or write the
elements inside the structured tags you should use the “dot” notation, e.g.

tank[1].volume is a proper syntax to read the volume of the 1st tank.

Reading Controller Tags:
To read a controller tags just specify the tag name.

Reading Program Tags:
To read a program tag, you have to specify the program name before a tag name. You must use the
following syntax:

Program: name.tag
name - program name
tag - tag name

So if you want to communicate with tag named valve from a program named control you will have
the following syntax: Program:control.valve

 192

Limitation of the BOOL arrays in ControLogix

The different syntax to access the elements in the BOOL arrays is used in the myPROJECT Designer,
compared to the programs stored in the controller. In myPROJECT Designer you have to address the
word and bit position separately. The word consists of the 32 bits – BOOL elements and the range of
the BOOL array is split into multiple words.

Example:

If you have a BOOL array TestBool with 54 elements you can access its elements using the following
address:

3rd element (bit) TestBool[0].3

34th element (bit) TestBool[1].2

54th element (bit) TestBool[1].22

Out of range, bad address TestBool[2].0

Out of range, bad address TestBool[50]

Recommendation on improvement of communication speed

The communication with the ControLogix controller has been designed in such way that reading of
arrays together is faster than reading each element separately. This means that if you use the tags
that can be arranged into the arrays you will notice significant increase of speed.

For example, to read the status of levels in all 10 tanks you should design your data types so that all
levels are stored in an array with 10 elements. Below you will see an example of how to implement
the faster method:

Level[1]

Level[2] FAST

Level[3]

If you prefer structures you can use the following way, however, addressing of this type will slow
down the communication. Therefore, we do not recommend to use this type of data addressing.

BigTank[1].Level

BigTank[2].Level SLOW

BigTank[3].Level

 193

23.2 MicroLogix and SLC

For MicroLogix PLC the data types are defined by means of the used file types. In PLC programs you
can use many different file types, but only the types specified in the following table can be read or
written by the mySCADA application.

File Type Description Use with these
controllers

N – Integer 16-bit long numbers, signed, this file is used
for storing numeric values or bit
information, read/write support.

SLC and
MicroLogix

B – Binary 16-bit long numbers, signed, this file stores
internal relay logic, read/write support.

SLC and
MicroLogix

F – Float This file stores numbers with a range of
1.1754944e-38 to 3.40282347e+38,
read/write support.

SLC and
MicroLogix

L - Long 32-bit long numbers, signed, also called
double word, read/write support.

MicroLogix 1100,
1200, 1400 and
1500

O - Output This file stores the state of output terminals
for the controller, read only.

SLC and
MicroLogix

I- Input This file stores the state of input terminals
for the controller, read only.

SLC and
MicroLogix

The other file types like Strings, Timer, Counter and Control are not supported.

There is a limitation that certain outputs can be read-only. To set outputs you should use the other
file type and then adjust the program design.

To access the file elements you should specify the element position after the colon, i.e. to read or
write to the 3rd element of the integer file no. 100, use the following syntax:

N100:3

You can access each bit directly by defining its position after the slash, i.e. to access the 7th bit of the
3rd element in the integer file no. 100 use the following syntax:

N100:3/7

 194

23.3 Modbus

The Modbus communication protocol describes the interactions of each device on a Modbus
network. In the protocol description you can find all details about establishing address, device
recognitions and all other important parts of the Modbus communication. Here we will concentrate
on protocol usage by mySCADA application.

Tag name syntax

In the following table the available syntaxes of the tag names are summarized.

Tag Meaning

Rn:e 16-bit signed integer stored in input
register at address e

Read access only.

Read function: 4

Standard address range:

30001-39999

R:e 16-bit unsigned integer stored in input
register at address e

H:e 16-bit unsigned integer stored in holding
register at address e

Read/write access.

Read function: 3

Write function: 16

Standard address range:

40001 – 49999(extended to 499999
by some manufacturers)

Hn:e 16-bit signed integer stored in holding
register at address e

Hf:e Float number stored in holding register at
address e

Hfs:e

Hfsb:e

Hfsw:e

Rf:e Float number stored in input register at
address e

Rfs:e

Rfsb:e

Rfsw:e

Hd:e 32-bit integer stored in holding register at
address e

Hds:e

Hdsb:e

Hdsw:e

Rd:e 32-bit integer stored in input register at

 195

A lot of manufacturers use addresses instead of tags when describing the Modbus communication.
mySCADA currently does not support direct access by address, so you have to convert such
addresses to tags, according to the provided table above. Be aware that specific read/write function
is needed to access each range, so the correct choice of the tag type is important.

32-bit registers in Modbus

The Modbus protocol was designed to operate with devices of 16-bit register length. Consequently,
special considerations are required when implementing 32-bit data elements. Most of
implementations use two consecutive 16-bit registers to represent 32 bits of data, or eventually 4
bytes of data. Within these 4 bytes data single-precision floating-point data can be encoded into a
Modbus RTU message.

Modbus itself does not define floating-point data type but it is widely accepted that it implements
32-bit floating-point data, using the IEEE-754 standard. However, the IEEE standard has no clear
definition of the byte order. Therefore, the most important consideration when dealing with 32-bit
data is that the data will be addressed in the correct order.

The following table shows two adjacent 16-bit registers conversion to a 32-bit floating-point or 32-
bit integer value:

Rds:e address e

Rdsb:e

Rdsw:e

I:e Discrete input, boolean value Read access only.

Read function: 2

Standard address range:

10000-19999

O:e Discrete Output Coils Read/write access:

Read function: 1

Write function: 15

Standard address range:

1-9999

 196

Register
suffix

Swap mode 16-bit registers 32-bit floating point
or integer

- N/A [a b][c d] [a b c d]

s Byte and word swap [a b][c d] [d c b a]

sb Byte swap [a b][c d] [b a d c]

sw Word swap [a b][c d] [c d a b]

The following section describes the 32-bit data types implementation to the mySCADA application.

Floating point numbers

Floating point data type is possible to use in both input and holding registers and all possible byte
swap combinations are supported.

Register Mapping Swap mode Bytes in 2 16-bit
registers

Resulting 32-bit
floating point

Hf Holding
registers

N/A [a b][c d] [a b c d]

Hfs Holding
registers

Byte and word
swap

[a b][c d] [d c b a]

Hfsb Holding
registers

Byte swap [a b][c d] [b a d c]

Hfsw Holding
registers

Word swap [a b][c d] [c d a b]

Rf Input
registers

N/A [a b][c d] [a b c d]

Rfs Input
registers

Byte and word
swap

[a b][c d] [d c b a]

Rfsb Input
registers

Byte swap [a b][c d] [b a d c]

Rfsw Input
registers

Word swap [a b][c d] [c d a b]

 197

32-bit Integers

The long integers are implemented in the same manner as the floating-point numbers.

Register Mapping Swap mode Bytes in 2 16-bit
registers

Resulting 32-bit integer

Hd Holding
registers

N/A [a b][c d] [a b c d]

Hds Holding
registers

Byte and word
swap

[a b][c d] [d c b a]

Hdsb Holding
registers

Byte swap [a b][c d] [b a d c]

Hdsw Holding
registers

Word swap [a b][c d] [c d a b]

Rd Input
registers

N/A [a b][c d] [a b c d]

Rds Input
registers

Byte and word
swap

[a b][c d] [d c b a]

Rdsb Input
registers

Byte swap [a b][c d] [b a d c]

Rdsw Input
registers

Word swap [a b][c d] [c d a b]

Address mapping

On the Modbus server-side only 16-bit long holding and input registers are used. The 32-bit long
data types are just the interpretation of the two adjacent registers. The concept of address mapping
is clearly shown on the following figure. Three tables are shown there. All of them are addressing
the same place in the memory: holding registers. In the first table the holding registers are shown,
in the second the 32-bit integers and in the last table the floating-point data type are shown.

Signed and unsigned numbers

Signed and unsigned integers can be stored in the registers. The unsigned numbers are read from or
written to the Modbus device using simple addressing, like H or R to holding and input registers. To
use signed integers add the suffix “n” to the address. Using tag Hn:5 means that access the holding
register at address 5 and the number will be interpreted as the signed integer.

H:0 H:1 H:2 H:3 H:4 H:5 H:6 H:7 H:8 H:9

Hd:0 Hd:2 Hd:4 Hd:6 Hd:8

 Hf:0 Hf:2 Hf:4 Hf:6 Hf:8

 198

In 32-bit data type numbers, the signed integers are used by default and the suffix “n” is not used.

Example:

An example of advanced Modbus functionality can be seen on ModbusDemo screen, which can be
downloaded as a part of the demo project from http://www.myscada.org/downloads.

The current values of inputs and outputs are visible in the upper part of the screen. Further, the
current values of holding registers H:0 and H:1 and its data interpretation if the stored numbers are
signed integers, float numbers or 32 bit integers. To set the register, click on the Set or Toggle
buttons. Figure 46 shows the storage of a floating point number 376.455 stored using Hf:0 register
and the floating-point value 2.456 is stored in the input register Rf:0.

http://www.myscada.org/

 199

Siemens S7 family PLCs
Standard S7-200/300/400/1200 LOGO! item Syntax

Address Syntax

Input, Output, Flag Memory Types

<memory type><S7 data type><address>

<memory type><S7 data type><address><.bit>

DB Memory Type

DB<num>,<S7 data type><address>

DB<num>,<S7 data type><address><.bit>

where <num> ranges from 1 to 65535.

Memory types

Memory Type Description Address Range Data Type Access

I
E

Inputs

Dependent on S7 Data Type
(see table below)

Read/Write

Q
A

Outputs Read/Write

M
F

Flag Memory Read/Write

V Variable Memory Read/Write

DB Data Blocks Read/Write

Note: The Variable Memory is available only for S7-200 and LOGO!.

S7 Data types

S7 Data Type Description Address Range Data Type

X Bit X0. b-X65534.b
.b is Bit Number 0-7

Boolean

B
BYTE

Unsigned
Byte

B0-B65535
BYTE0-BYTE65535

B0.b-B65535.b
BYTE0.b-BYTE65535.b
.b is Bit Number 0-7

8-bit unsigned integer

Boolean

C
CHAR

Signed Byte C0-C65535
CHAR0-CHAR65535

C0.b-C65535.b
CHAR0.b-CHAR65535.b
.b is Bit Number 0-7

8-bit signed integer

Boolean

 200

W
WORD

Unsigned
Word

W0-W65534
WORD0-WORD65534

W0.b-W65534.b
WORD0.b-WORD65534.b
.b is Bit Number 0-15

16-bit unsigned integer

Boolean

I
INT

Signed Word I0-I65534
INT0-INT65534

I0.b-I65534.b
INT0.b-INT65534.b
.b is Bit Number 0-15

16-bit signed integer

Boolean

D
DWORD

Unsigned
Double Word

D0-D65532
DWORD0-DWORD65532

D0.b-D65532.b
DWORD0.b-
DWORD65532.b
.b is Bit Number 0-31

32-bit unsigned integer

Boolean

DI
DINT

Signed
Double Word

DI0-DI65532
DINT0-DINT65532

DI0.b-DI65532.b
DINT0.b-DINT65532.b
.b is Bit Number 0-31

32-bit signed integer

Boolean

REAL IEEE Float REAL0-REAL65532 Float

Note: Be cautious while modifying WORD, INT, DWORD, and DINT type, as each address starts at a
byte offset within the device. Therefore, words MW0 and MW1 overlap at byte 1. Writing to MW0
will also modify the value held in MW1. Similarly, DWORD and long types can also overlap. It is
recommended that these memory types should be used in such way that overlapping does not occur.
As an example DWORD MD0, MD4, MD8 ... etc. can be used as a prevention of bytes against
overlapping.

Note (iOS only): Please be aware of difference in addressing X type of variables (like IX0.0) between
TIA portal/Step 7 and mySCADA. The problem is that in TIA portal variable of X type defined as of 8-
bit size. In mySCADA we treat them as 16-bits with swap byte order. For example if you define
db1.dbx1 and .dbx2 in TIA portal you can access each of them in .0-.7 bit range. In mySCADA you can
access both variables as db1.dbx1 with .0-.15 bit range. Because of swap bit order db1.dbx1.0-.7 in
mySCADA would relate to TIA portal db1.dbx2.0-.7 and db1.dbx1.8-.15 would access db1.dbx1.0-.7
in TIA portal addressing. We made such difference in mySCADA to fully accommodate analog inputs
readings, like IX64, for example. At the moment to achieve same addressing to BOOLEAN variables
as TIA portal please use B type instead of X in mySCADA, as B type don't have swap bytes order.

S7 1200/1500 notes

To access the DB in S71200/1500 some additional setting PLC-side are needed.
1. Only global DBs can be accessed.
2. The optimized block access must be turned off.
3. The access level must be “full” and the “connection mechanism” must allow GET/PUT.
Set the previous in TIA Portal (shown version V12)
Select the DB in the left pane under “Program blocks” and press Alt+Enter (or in the contextual
menu select “Properties…”)
Uncheck Optimized block access, (by default it is checked).

 201

Protection

Select the CPU project in the left panel and press Alt+Enter (or in the contextual menu select
“Properties…”)
In the item Protection, select “Full access” and Check “Permit access with PUT/GET ….”, as pictured.

 202

LOGO! 0BA7/0BA8 configuration

Configuring the server connection allows you to connect LOGO! with mySCADA devices for reading
and writing to the memory, just like a HMI panel would do.

In the Tools menu choose the Ethernet Connections item.

Right-click on the Ethernet Connections and select Add connections to add a connection

Double-click on the new connection created and edit its parameters by selecting Server
Connection.

Note:
The Local TSAP in corresponds to the Remote TSAP of LOGO! and vice-versa. This is the key concept
for the S7 connections! If you uncheck “Accept all connections” you must specify the mySCADA
device address. The “Connect with an operator panel” checkbox can be checked or unchecked.

Confirm the dialog, close the connection editor and download the configuration into LOGO!.

S7-200 (via CP243-1) configuration

Configuration of S7 200 is very similar with LOGO!

In the Tools menu select the Internet Wizard item.

Set up the CP243 position and IP configuration, in the next window select at least one
 peer-to-peer connection and set it up the same way as with LOGO!.

23.4 OPC UA

OPC Unified Architecture is an interoperability standard developed by OPC Foundation. It is the
successor to OLE for process control (OPC). Although developed by the same organization, OPC UA
differs significantly from its predecessor. The old DCOM-based version is not supported by
mySCADA products. Using this protocol has two main advantages:

 Security – configures a secure message interchange, based on a contemporary cryptography

 Scalability – OPC server can communicate with a different vendors infrastructure

You should keep in mind that when using OPC you are not communicating with PLCs directly. The
OPC server stands in the middle and all communications are dependent on the OPC server
configuration.

mySCADA implementation of the OPC UA standard supports only the binary protocol -
opc.tcp://Server. We do not support the web version – http://Server.

myScada
OPC

Server
PLC

http://server/

 203

Connection configuration

With myPROJECT Designer you can set connections to the OPC servers and the following
parameters.

 IP Address, Port – IP address and port of the OPC UA server

 User, Password (Optional) – credentials to the OPC UA server, if configured on the server

 Security Police (Optional)
o Basic128Rsa15 - uses 128-bit cryptography
o Basic256 - uses 256-bit cryptography
o None (Default)

 Message Security Mode (Optional)
o SignEnc - Signs and encrypts the messages

o Sign - Signs the messages
o None (Default) - No security

 Certificates (Optional) - you should provide a private key and associated certificate in the
PEM format, you can easily recognize PEM format, that the certificate file will begin with: “--
---BEGIN CERTIFICATE-----” and end with “-----END CERTIFICATE-----” sentence.

Tag name syntax

Tag name is any string, which is supported and accepted by the connected OPC UA server. You can
use the browse function in the designer to get the list of tags at your disposal. You can use the
dialog to select the proper tag, later after selecting, you can edit the tag name. Usually the
subsequent edition is not needed, but sometimes is, e.g. to target the proper tag address by adding
the suffix.

 204

23.5 MELSEC-Q

Currently mySCADA supports only a part of the MELSEC-Q protocol, namely 3E type of packets,
originally intended for E71 type of adapters. In the table below you can find the list of both basic
(original) tag syntaxes and some extensions, introduced by our team.

Tag name syntax

In the following table the available syntax of the tag names is summarized.

Tag Meaning Address range (decimal)

SM

(91h)

Special relay, 1-bit value 0000 to 2047

SD

(A9h)

Special register, 16-bit value 0000 to 2047

X

(9Ch)

Input, 1-bit value 0000 to 8191

Y Output, 1-bit value 0000 to 8191

 205

(9Dh)

M

(90h)

Internal relay, 1-bit value 0000 to 8191

L

(92h)

Latch relay, 1-bit value 0000 to 8191

F

(93h)

Annunciator, 1-bit value 0000 to 2047

V

(94h)

Edge relay, 1-bit value 0000 to 2047

B

(A0h)

Link relay, 1-bit value 0000 to 8191

D

(A8h)

Data register, 16-bit value, unsigned 000000 to 012287

W

(B4h)

Link register, 16-bit value, unsigned 0000 to 8191

TS/TC

(C1h)/(C0h)

Contact/Coil timer, 1-bit value 0000 to 2047

TN

(C2h)

Current value timer, 16-bit value,
unsigned

0000 to 2047

SS/SC

(C7h)/(C6h)

Contact/Coil retentive timer, 1-bit value 0000 to 2047

SN

(C8h)

Current value retentive timer, 16-bit
value, unsigned.

0000 to 2047

CS/CC

(C4h)/(C3h)

Contact/Coil counter, 1-bit value 0000 to 1023

CN

(C3h)

Current value counter, 16-bit value,
unsigned.

0000 to 1023

 206

SW

(B5h)

Link special register, 16-bit value,
unsigned.

0000 to 2047

SB

(A1h)

Link special relay, 1-bit value 0000 to 2047

DX

(A2h)

Direct input, 1-bit value 0000 to 8191

DY

(A3h)

Direct output, 1-bit value 0000 to 8191

Our implementation of MELSEC protocol supports also the following extension tags:

Tag Meaning Address range (decimal)

DS

(A8h)

Data register, 16-bit value,
signed

000000 to 012287

DD

(A8h)

Data register, 32-bit value,
signed

000000 to 012286

Use regular D registers,
address increased by 2

FL

(A8h)

Data register, 32-bit float
value

000000 to 012286

Use regular D registers,
address increased by 2

FD

(A8h)

Data register, 64-bit float
value

000000 to 012284

Use regular D registers,
address increased by 4

WS

(B4h)

Link register, 32-bit signed
value

0000 to 8191

Use regular W registers,
address increased by 2

All custom tags consist of multiple regular 16-bit tags in the least to the most significant word order.

Connection settings

IP Address – IP address of PLC.

 207

Port – port for the TCP connection to the PLC, please note that all Mitsubishi PLCs support only one
connection / port. For multiple connections to the same PLC set a different port for each mySCADA
device.

MultiBatch Optimised – enable this function if the PLC supports “Multiple block batch read/write“
functions (codes 0406/1406). Enabling this option for a PLC that does not support such functions
will cause a communication error.

CPUTimer – set this parameter if you expect an extensive communication with the PLC or
communicate with a heavily loaded PLC to increase the response preparation time on the PLC side.

Optimisation Window – this setting influences how “aggressive” the optimization of your request
will be. If it is set to 0 each tag will be requested in a separate packet (slow, but helps to find errors
in the syntax). With default value of 1 all “adjusted” tags (D0000 and D0001, for example) will be
requested in one packet. Set to 2 allows optimization to skip one tag address to the count tags as
“adjusted” (for example D0000 and D0002 will be requested in one packet with such setting). 3
allows to skip 2 addresses etc.. Maximal value for this setting is 20. Please note that if the error
returns in response to request, all tags included in this request will not be read. Use this feature
carefully.

The following block of settings is required only for a hierarchy access within the MELSEC network of
multiple PLCs - for a direct (local) communication leave the settings at their default values.

 PC Number – sets number of requesting station

 Network number – sets the network number to send the request to

 Request dest.Module No. – sets the number of requested modules for multi-CPU PLC
connection

 Request dest.Module I/O - sets the number of requested modules for connecting via multi-
drop

 208

24. Download/Upload from/to Device

24.1 Download to Device

When you have finished designing and setting your project you are ready to download it to your
operating device.

1) Select the project you wish to download to the device from the Projects folder in the Project
Window - this will render the Upload/Download icons in the toolbar.

2) Click on the Download to Devices button to load the selected project to the device.

You can also right-click on the project from the list and select Download from the menu.

3) In the following dialog window you will see the list of all defined devices and all available On-
line devices you can load your project onto (except mySCADA Box and myLOGGER - these
need a serial number for communication).

 209

4) Before downloading tick off the box Check Project before Download -> if there are any
errors found the following dialog will show up:

Note: You can download your project to multiple devices at once. To do that, check multiple devices.

Warning: when loading a new project to your device all existing projects loaded on the device will
be overwritten! Thus, back-up all important project information from the device before loading a
new project to it.

24.2 Upload from Device

You can also upload a mySCADA project from your device to myPROJECT Designer.

Select one of the existing projects:

1) Click on the Upload from Device button or right-click on the Projects folder in the
Project Window and select Upload from Device from the context menu. The following dialog
window will show up:

 210

2) Select the device you want to upload the project from and click on the Connect button. If
the connection is successful the following message will be displayed:

3) Click on the Upload from Device button

The warning dialog notifying a possible project data loss will appear.

Warning: All data saved in the project folder will be lost!

4) After successful project uploading the confirming dialog will be shown.

5) Now you can start working with your created project!

 211

No part of this document or of the program may be reproduced or transmitted in any form without the express written
permission of mySCADA Technologies s.r.o.

Information in this document is subject to change without notice and is not binding in any way for the company
mySCADA Technologies s.r.o.

